1
2
(a) J. L. C. Rowsell and O. M. Yaghi, Microporous Mesoporous
Mater., 2004, 73, 3; (b) R. Robson, Dalton Trans., 2008, 5113.
For a recent review and highlights see: (a) G. Ferey, Chem. Soc.
´
Rev., 2008, 37, 191; (b) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig,
H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003, 423, 705;
(
c) S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed.,
004, 43, 2334; (d) G. Ferey, C. Mellot-Draznieks, C. Serre,
F. Millange, J. Dutour, S. Surble and I. Margiolaki, Science,
005, 309, 2040.
2
´
2
3
For recent examples see: (a) M. Gallo and D. Glossman-Mitnik,
J. Phys. Chem. C, 2009, 113, 6634; (b) Y. Li and R. T. Yang,
Langmuir, 2007, 23, 12937; (c) S. S. Kaye, A. Dailly, O. M. Yaghi
and J. R. Long, J. Am. Chem. Soc., 2007, 129, 14176;
x
Fig. 6 Two strands of the bent 1D MORF {[CuBr](2)} showing the
polymeric metal–ligand framework (blue) in wire format and the
individual DSDB24C8 axle components (red) in space-filling mode.
(Colour key: Cu = dark blue, S = yellow, Br = green.)
(
d) H. Furukawa, M. A. Miller and O. M. Yaghi, J. Mater.
Chem., 2007, 17, 3197; (e) D. Britt, D. Tranchemontagne and
O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A., 2008, 105,
(
MORF) which is charge neutral. Fig. 6 shows how these 1D
wave polymers fit together in plane. Unlike
[Cu (OBn) (1CDSDB24C8)]} , there are no direct inter-
1
1623.
a
4
For recent examples see: (a) B. Chen, C. Liang, J. Yang,
D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi
and S. Dai, Angew. Chem., Int. Ed., 2006, 45, 1390; (b) J.-R. Li,
R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 2009,
{
2
4
x
actions between the strands as all the closest contacts to the
sulfonate groups and the bromide ligand are with water
molecules which form a polar hydration layer between the
3
8, 1477.
5
6
For a recent review see: J. Y. Lee, O. K. Farha, J. Roberts,
K. A. Scheidt, S. B. T. Nguyen and J. T. Hupp, Chem. Soc.
Rev., 2009, 38, 1450.
For a recent review see: (a) D. Zacher, O. Shekhah, C. Woell and
R. A. Fischer, Chem. Soc. Rev., 2009, 38, 1418; (b) S. Achmann,
G. Hagen, J. Kita, I. M. Malkowsky, C. Kiener and R. Moos,
Sensors, 2009, 9, 1574; (c) B. Chen, L. Wang, F. Zapata, G. Qian
and E. B. Lobkovsky, J. Am. Chem. Soc., 2008, 130, 6718;
1
6
strands.
The achievement of a neutral framework MORF free from
independent counterions is a major step towards reaching our
goal of creating robust materials with dynamic interlocked
components. Although the macrocyclic rings in these 1D
systems are static (up to the decomposition temperature of
(d) B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui
and G. Qian, Angew. Chem., Int. Ed., 2009, 48, 500.
2
00 1C) these new MORF materials provide a potential
strategy for the creation of truly porous MORFs which will
need to be robust three-dimensional solids that maintain
permanent porosity upon solvent removal. To this end, we
are exploring the possibility that replacing the simple benzoate
ligand in {[Cu (OBn) (1CDSDB24C8)]} with a bridging
7 For a recent example see: Z.-X. Wang, X.-L. Li, B.-L. Liu,
H. Tokoro, P. Zhang, Y. Song, S. Ohkoshi, K. Hashimoto and
X.-Z. You, Dalton Trans., 2008, 2103.
8
(a) S. J. Loeb, Chem. Commun., 2005, 1511; (b) S. J. Loeb, Chem.
Soc. Rev., 2007, 36, 226.
9 (a) M. A. Garcia-Garibay and C. E. Godinez, Cryst. Growth Des.,
009, 9, 3124; (b) M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. U.
2
4
x
2
dicarboxylate linker might lead to the creation of a robust
S. A., 2005, 102, 10771; (c) R. D. Horansky, L. I. Clarke,
J. C. Price, T. V. Khuong, P. D. Jaworski and M.A. Garcia-
Garibay, Phys. Rev. B, 2005, 72, 014302/1.
3
D lattice; a 2D carboxylate grid pillared by a neutral
rotaxane linker. There is ample precedence for this type of
0
10 T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S.-I. Noro,
H. Takahshi, R. Kumai, Y. Tokura and T. Nakamura, Nat.
Mater., 2009, 8, 342.
MOF with simple linkers such as DABCO, 4,4 -bipyridine as
1
7
well as more complex linkers. Results on these systems will
be reported in due course.
1
1 (a) G. J. E. Davidson and S. J. Loeb, Angew. Chem., Int. Ed., 2003,
42, 74; (b) D. J. Hoffart and S. J. Loeb, Angew. Chem., Int. Ed.,
2005, 44, 901; (c) D. J. Hoffart and S. J. Loeb, Supramol. Chem.,
2007, 19, 89.
Notes and references
z X-Ray data were collected on a Bru
¨
ker APEX CCD diffractometer
Crystal
12 D. J. Hoffart, J. Tiburcio, A. de la Torre, L. K. Knight and
S. J. Loeb, Angew. Chem., Int. Ed., 2008, 47, 97.
13 Y.-F. Han, Y.-J. Lin, W.-G. Jia and G.-X. Jin, Organometallics,
2008, 27, 4088.
14 (a) S. J. Loeb and J. A. Wisner, Angew. Chem., Int. Ed., 1998, 37,
2838; (b) S. J. Loeb, J. Tiburcio, S. J. Vella and J. A. Wisner, Org.
Biomol. Chem., 2006, 4, 667; (c) S. J. Loeb and J. A. Wisner, Chem.
Commun., 2000, 1939; (d) S. J. Loeb and J. A. Wisner, Chem.
Commun., 1998, 2757; (e) N. Georges, S. J. Loeb, J. Tiburcio and
J. A. Wisner, Org. Biomol. Chem., 2004, 2, 2751; (f) S. J. Loeb and
J. A. Wisner, Chem. Commun., 2000, 845.
18,19
following
standard
procedures.
(DMF)}: C56
data for
, M = 1244.41,
{
T = 173(2) K, triclinic, space group P1, a = 10.342(2), b = 12.310(2),
[1CDSDB24C8](MeOH)
7
H
85
N
5
O S
22 2
ꢀ
˚
c = 13.586(2) A, a = 73.597(2)1, b = 69.539(2)1, g = 76.445(2)1,
3
ꢀ3
ꢀ1
˚
V = 1536.7(5) A , rcalc = 1.345 g cm , m = 0.168 mm , Z = 1,
reflections collected = 14 583 (Rint = 0.0398), final R indices [I 4 2sI]:
R
1
2 1 2
= 0.0808 , wR = 0.2101, R indices (all data): R = 0.1078. wR =
0.2327, GoF = 1.034 with data/variables/restraints = 5386/412/5.
Crystal data for {[Cu
2
(OBn)
4
(1)](MeOH)
2
(DMF)}
x
:
C
, M = 1695.72, T = 173(2) K, triclinic, space group P1,
79
H
85Cu2-
ꢀ
N
5
O
S
25 2
˚
a = 10.756(3), b = 11.397(3), c = 17.365(5) A, a = 103.580(3)1, b =
¨
15 C. B. Aakeroy, N. Schultheiss and J. Desper, Dalton Trans., 2006,
1627.
3
ꢀ3
,
˚
9
8.407(3)1, g = 104.257(3)1, V = 1957.8(9) A , rcalc = 1.438 g cm
ꢀ1
m = 0.679 mm , Z = 1, reflections collected = 18 532 (Rint
.0663), final R indices [I 4 2sI]: R = 0.0593, wR = 0.1324, R
indices (all data): R = 0.0982, wR = 0.1497, GoF = 0.991
with data/variables/restraints 6873/533/0. Crystal data for
[CuBr(2)](H O)10 78BrCuN 1422.81,
T = 173(2) K, monoclinic, space group C
=
16 For an example of a porous coordination polymer with an internal
surface functionalized by anionic sulfonate groups see: S. Horike,
S. Bureekaew and S. Kitagawa, Chem. Commun., 2008, 471.
17 (a) A. Pichon, C. Mendicute Fierro, M. Nieuwenhuyzen and
S. L. James, CrystEngComm, 2007, 9, 449; (b) O. K. Farha,
K. L. Mulfort, A. M. Thorsness and J. T. Hupp, J. Am. Chem.
Soc., 2008, 130, 8598.
0
1
2
1
2
=
{
2
x
} :
C
58
H
4
24
O S
2
,
M
=
2
/c, a = 27.257(5),
3
˚
˚
b = 14.035(2), c = 21.840(4) A, b = 125.981(4), V = 6761(2) A ,
r
ꢀ3
ꢀ1
calc = 1.398 g cm , m = 1.054 mm , Z = 4, reflections collected =
¨
18 G. M. Sheldrick, SHELXTL 5.03 Program Library, Bruker
2
1 266 (Rint = 0.0741), final R indices [I 4 2sI]: R
1
= 0.1001,
= 0.3176,
Analytical Instrument Division, Madison, Wisconsin, USA, 2003.
19 All X-ray figures were prepared with DIAMOND 3.2-CRYSTAL
IMPACT, Postfach 1251, D-53002, Bonn, Germany 2007.
wR
GoF = 1.163 with data/variables/restraints = 3526/407/22.
2
= 0.2816, R indices (all data): R
1
= 0.1453. wR
2
This journal is ꢁc The Royal Society of Chemistry 2009
Chem. Commun., 2009, 5585–5587 | 5587