3
produce trifluoromethyl-capped butadienes. Some of the latter
products exhibit intense fluorescence in the solid state.
This work was partly supported by JSPS KAKENHI
Grant Numbers 18H04267 (in Precisely Designed Catalysts
with Customized Scaffolding) and 18K19083 (Grant-in-Aid
for Challenging Research (Exploratory)), Nagase Science
Technology Foundation, and Yamada Science Foundation to
T.S. and JSPS KAKENHI Grant Number JP18H04627 (in
Frontier Research on Chemical Communications) to Y.U. We
also thank Prof. Dr. N. Tohnai (Osaka University) for
fluorescence quantum efficiency measurements and helpful
discussions.
Table 2. Reaction of a-Trifluoromethylacrylic Acid (2)
with Alkenes 6a
[Cp*RhCl2]2
CF3
CO2H
AgOAc
CF3
+
R
R
NMP
6
2
7
product yield (%)
CF3
CF3
CF3
Me
Cl
7a 46%
7b 40%
7c 41%
Supporting Information is available electronically on J-
STAGE.
CF3
CF3
References and Notes
7d 34%
7e 40%
1
For selected reviews, see: a) J. Wang, M. Sánchez-Roselló, J. L.
Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A.
Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432-2506. b) S.
Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem Soc. Rev.
2008, 37, 320-330. c) R. Berger, G. Resnati, P. Metrangolo, E.
Weberd, J. Hulliger, Chem Soc. Rev. 2011, 40, 3496-3508. d) D.
Anton, Adv. Mater. 1998, 10, 1197-1205.
CF3
CF3
(n-Bu)O2C
7f 40%b
(n-C8H17)O2C
7g 39%b
a Reaction conditions: 6 (2 mmol), 2 (0.5 mmol), [Cp*RhCl2]2 (0.005 mmol),
AgOAc (1 mmol) in NMP (2.5 mL) under Ar at 120 oC for 6 h, unless otherwise
noted. b [Cp*RhCl2]2 (0.01 mmol) was used.
2
For representative reviews, see: a) X. Liu, C. Xu, M. Wang, Q. Liu,
Chem. Rev. 2015, 115, 683-730. b) T. Liang, C. N. Neumann, T.
Ritter, Angew. Chem., Int. Ed. 2013, 52, 8214-8264. c) K. L. Kirk,
Org. Process Res. Dev. 2008, 12, 305-321.
3
4
For representative reviews, see: a) W. K. Hagmann, J. Med. Chem.
2008, 51, 4359-4369. b) K. Müller, C. Faeh, F. Diederich, Science
2007, 317, 1881-1886.
Finally, we conducted preliminary investigations on the
properties of prepared trifluoromethyl-capped butadienes.
Compounds 7d and 7e showed strong fluorescence in the
solid state at 383 and 395 nm (excited at 310 nm) (Figure 1).
The quantum efficiency of the solid-state fluorescence was
determined to be absolute values of 0.30 and 0.29,
respectively.
For example, see: a) C. Almansa, L. A. Gómez, F. L. Cavalcanti, A.
F. de Arriba, R. Rodríguez, E. Carceller, J. García-Rafanell, J. Forn,
J. Med. Chem. 1996, 39, 2197-2206. b) S. Watanabe, Jpn. Kokai
Tokkyo Koho (1992), JP 04063598. c) R. H. Gordonsmith, M. J.
Raxworthy, P. A. Gulliver, Biochem. Pharmac. 1982, 31, 433-437.
M. Hu, C. Ni, J. Hu, J. Am. Chem. Soc. 2012, 134, 15257-15260.
F. Gelat, A. Patra, X. Pannecoucke, A. T. Biju, T. Poisson, T.
Besset, Org. Lett. 2018, 20, 3897-3901.
5
6
7
8
M. Schlosser, Angew. Chem., Int. Ed. 2006, 45, 5432-5446.
For reviews, see: a) M. Miura, T. Satoh, K. Hirano, Bull. Chem.
Soc. Jpn. 2014, 87, 751-764. b) T. Satoh, M. Miura, Chem. Eur. J.
2010, 16, 11212-11222.
9
Prakash, Olah, and co-workers reported an example for the b-
arylation of 2. However, their acid-promoted Friedel-Crafts
procedure is applicable only to electron-rich arenes and tends to
form mixtures of regioisomers: G. K. S. Prakash, F. Paknia, H.
Vaghoo, G. Rasul, T. Mathew, G. A. Olah, J. Org. Chem. 2010, 75,
2219-2226.
10
For recent examples, see: a) Y. Ni, K. Song, K. Shen, Z. Yang, R.
Liu, S. Lin, Q. Pan, Tetrahedron Lett. 2018, 59, 1192-1195. b) R.
Liu, Z. Yang, Y. Ni, K. Song, K. Shen, S. Lin, Q. J. Pan, J. Org.
Chem. 2017, 82, 8023-8030. c) L. Zhang, X. Xie, L. Fu, Z. Zhang,
J. Org. Chem. 2013, 78, 3434-3437. d) N. R. Vautravers, B. Breit,
Synlett 2011, 2517-2520. e) G. Zou, J. Guo, Z. Wang, W. Huang, J.
Tang, Dalton Trans. 2007, 3055-3064. See also reviews: f) T.
Miura, M. Murakami, Chem. Commun. 2007, 217-224. g) T.
Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829-2844. h) K.
Fagnou, M. Lautens, Chem. Rev. 2003, 103, 169-196.
Wavelength / nm
Figure 1. Normalized photoluminescence spectra (excited at
310 nm) of 7d (dotted line) and 7e (solid line) in solid state.
11
For selected recent reviews for C–H functionalization, see: a) C.
Sambiagio, D. David Schöbauer, R. Blieck, T. Dao-Huy, G.
Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord,
T. Besset, B. U. W. Maes, M. A. Schnürch, Chem. Soc. Rev. 2018,
47, 6603-6743. b) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y.
Zhang, Org. Chem. Front. 2015, 2, 1107-1295. c) G. Song, X. Li,
Acc. Chem. Res. 2015, 48, 1007-1020. d) S. De Sarkar, W. Liu, S. I.
Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1461-
1479. e) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369-
375. f) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc.
Chem. Res. 2012, 45, 814-825. g) K. M. Engle, T.-S. Mei, M. Wasa,
J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788-802. h) S. H. Cho, J. Y.
Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068-5083. i)
D. Lapointe, K. Fagnou, Chem. Lett. 2010, 39, 1118-1126.
In summary, we have demonstrated that the b-arylation
of readily available a-trifluoromethylacrylic acid can be
achieved upon treatment with arylboronic acids in the
presence of a rhodium(III) catalyst and a silver salt additive.
Obtained b-aryl-a-trifluoromethylpropanoic acids are of
interest because of their biological activities and utilities as
important synthetic intermediates in fine chemicals producing
processes. Moreover, it has been found that a-
trifluoromethylacrylic acid also undergoes b-alkenylation
under similar conditions accompanied by decarboxylation to