NH2 group at the 4-position of the pyridinium group dra-
matically reduced the observed association constant.9 This
was attributed to a reduction in the acidity of the participating
hydrogen bonding groups on the axle but also to a reduction
in the charge at the pyridinium nitrogen due to contributions
from an unfavorable resonance form. We reasoned that it
should be possible to fine-tune the strength of a [2]pseudo-
rotaxane interaction and control the threading-unthreading
process using these different resonance structures.
pyridine obtained by a Suzuki coupling between 4-N,N-
dimethylaminophenylboronic acid and 4-bromopyridine. The
protonated version 24+ was generated by the addition of
CF3SO3H; see Scheme 1.
Scheme 1. Synthesis of Axles 12+ and 24+
To this end, we designed the new axle molecule 12+, which
can be represented by two possible resonance forms having
dramatically different structures and charge distributions; see
Figure 1. This molecule has the structure of an organic D-π-
Figure 1. Dicationic axle 12+ can be represented by two possible
resonance forms.
The X-ray crystal structures of 12+ and 24+ reveal that
there are significant differences in their solid-state structures;
see Figure 2.10 There is evidence that axle 12+ adopts a
A-π-D chromophore with two terminal donor groups (N,N-
dimethylamino) and an inner acceptor group (bis-pyridini-
um). In principle, this should give rise to an intramolecular
charge transfer (ICT) observable in the electronic spectrum,
and we reasoned that it should be possible to turn OFF the
ICT by addition of a Lewis acid, such as BF3 or H+.
The new axle 12+ was synthesized from the reaction of
1,2-dibromoethane with 4′-(N,N-dimethylamino) phenyl-4-
(3) (a) Leigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Nature
2003, 424, 174-179. (b) Ceccarelli, M.; Mercuri, F.; Passerone, D.;
Parrinello, M. J. Phys. Chem. B 2005, 109, 17094-17099. (c) Amabilino,
D. B.; Anelli, P.-L.; Ashton, P. R.; Brown, G. R.; Cordova, E.; Godinez,
L. A.; Hayes, W.; Kaifer, A. E.; Philp, D.; Slawin, A. M. Z.; Spencer. N.;
Stoddart. J. F.; Tolley, M. S.; Williams, D. J. J. Am. Chem. Soc. 1995,
117, 11142-11170. (d) Liu, Y,; Bonvallet, P, A.; Vignon, S, A.; Khan, S,
I.; Stoddart, J. F. Angew. Chem., Int. Ed. 2005, 44, 3050-3055. (e)
Yamamoto, T.; Tseng, H.-R.; Stoddart, J. F.; Balzani, V.; Credi, A.;
Marchioni, F.; Venturi, M. Collect. Czech. Chem. Commun. 2003, 68, 1488-
1514. (f) Raymo, F. M.; Stoddart, J. F. In Molecular Switches; Feringa, B.
L., Ed.; Wiley-VCH: Germany, 2001; pp 219-248. (g) Ashton, P. R.;
Baldoni, V.; Balzani, V.; Credi, A.; Hoffmann, H. D. A.; Martinez-Diaz,
M.-V.; Raymo, F. M.; Stoddart, J. F.; Venturi, M. Chem. Eur. J. 2001, 7,
3482-3493.
(4) (a) Sauvage, J.-P. Chem. Commun. 2005, 1507-1510. (b) Loeb, S.
J.; Tiburcio, J.; Vella, S. J. Chem. Commun. 2006, 1598-1600.
(5) Loeb, S. J.; Wisner, J. A. Angew. Chem., Int. Ed. 1998, 37, 2838-
2840.
(6) (a) Loeb, S. J.; Wisner, J. A. Chem. Commun. 1998, 2757-2758.
(b) Davidson, G. J. E.; Loeb, S. J.; Parekh, N. A.; Wisner, J. A. Dalton
Trans. 2001, 3135-3136. (c) Georges, N.; Loeb, S. J.; Tiburcio, J.; Wisner,
J. A. Org. Biomol. Chem. 2004, 2, 2751-2756.
Figure 2. X-ray structures of 12+ (top) and 24+ (bottom) showing
the atom labeling scheme and bond distances.
pseudo-quinoid form with, for example, reduced N1-C3 and
C8-C9 distances (1.367(3), 1.466(4) Å, respectively) and a
small dihedral angle between aromatic rings of 18.4°
supporting delocalization of the positive charge. In contrast,
the bonding parameters for 24+ are indicative of the more
common bis(pyridinium)ethane form with longer N1-C3 and
C8-C9 distances (1.483(5), 1.473(5) Å, respectively) and a
more substantial dihedral angle of 55.4°; see Table 1.
For both 12+ and 24+, DFT (B3LYP) calculations localized
the HOMO on the aniline ring and the LUMO on the
(7) (a) Tiburcio, J.; Davidson, G. J. E.; Loeb, S. J. Chem. Commun. 2002,
1282-1283. (b) Davidson, G. J. E.; Loeb, S. J. Angew. Chem., Int. Ed.
2003, 42, 74-77. (c) Loeb, S. J.; Tramontozzi, D. A. Org. Biomol. Chem.
2005, 3, 1393-1401. (d) Loeb, S. J. Chem. Commun. 2005, 1511. (e)
Hoffart, D. J.; Loeb, S. J. Angew. Chem., Int. Ed. 2005, 44, 901-904.
(8) Hubbard, A. L.; Davidson, G. J. E.; Patel, R. H.; Wisner, J. A.; Loeb,
S. J. Chem. Commun. 2004, 138-139.
(9) Loeb, S. J.; Tiburcio, J.; Vella, S. J.; Wisner, J. A. Org. Biomol.
Chem. 2006, 4, 667-680.
(10) DIAMOND 3.1; CRYSTAL IMPACT, Postfach 1251, D-53002,
Bonn, Germany 2005.
3422
Org. Lett., Vol. 8, No. 16, 2006