110
M. L. P. Price et al. / Bioorg. Med. Chem. Lett. 13 (2003) 107–110
ted,25,26 the bulkier thiophene ring warrants considera-
tion that sterics may play a role in the reduced affinity.
However, calculations of the van der Waals contribu-
tions to the intermolecular interaction energies of the
docked complexes (data not shown) refute this sugges-
tion. Estimates of the relative solvation free energies for
binding (ÁÁGsolvation) of 2 and 3 were then obtained by
reducing the solvation energy of the complex by that of
the unbound protein and ligand (single-point calculations
using the GB/SA solvation model);27 the ÁÁGsolvation
for 3 is larger than 2 by ca. 9 kcal/mol. While the mag-
nitude of these relative solvation free energies may be
overestimated, these results indicate that there is an
enhanced desolvation penalty for the more hydrophilic
guanidine which is likely a dominant contributor to the
reduced affinity of 3 compared to 2. Although the
amino compounds 12 and 13 suffer less from this sol-
vation penalty than 3, there is a >10 kcal/mol loss of
favorable intermolecular interactions in the binding site.
References and Notes
1. Iltzsch, M. H.; el Kouni, M. H.; Cha, S. Biochemistry 1985,
24, 6799.
2. Friedkin, M.; Roberts, D. J. Biol. Chem. 1954, 207, 245.
3. Kline, P. C.; Schramm, V. L. Biochemistry 1995, 34, 1153.
4. Haraguchi, M.; Miyadera, K.; Uemura, K.; Sumizawa, T.;
Furukawa, T.; Yamada, Y.; Akiyama, S. Nature 1994, 368, 198.
5. Matsushita, S.; Nitanda, T.; Furukawa, T.; Sumizawa, T.;
Tani, A.; Nishimoto, K.; Akiba, S.; Miyadera, K.; Fukush-
ima, M.; Yamada, Y.; Yoshida, H.; Kanzaki, T.; Akiyama, S.
Cancer Res. 1999, 59, 1911.
6. Fukushima, M.; Suzuki, N.; Emura, T.; Yano, S.; Kazuno,
H.; Tada, Y.; Yamada, Y.; Asao, T. Biochem. Pharmacol.
2000, 59, 1227.
7. Thompson, J. D.; Higgins, D. G.; Gibson, T. J. Nucleic
Acids Res. 1994, 22, 4673.
8. Spraggon, G.; Stuart, D.; Ponting, C.; Finnis, C.; Sleep, D.;
Jones, Y. J. Mol. Biol. 1993, 234, 879.
9. Walter, M. R.; Cook, W. J.; Cole, L. B.; Short, S. A.;
Koszalka, G. W.; Krenitsky, T. A.; Ealick, S. E. J. Biol. Chem.
1990, 265, 14016.
It is worth noting that the bulkier 4 maintains a similar
level of activity to the unsubstituted 3. Our docking
studies indicate that space is available in the binding site
for the extra aromatic ring, and that the electrostatic
potential in this region is positively charged, as shown in
Figure 4. Attempting to modulate the activity of the
compound, by functionalizing the benzene ring or
exploring other aromatic substituents, is a promising
direction for future work. Another attractive approach
for enhancing binding affinity is functionalization at the
6-position on the thiophene ring which should pre-
organize the conformation that best mimics the transition
state.
10. Pugmire, M. J.; Ealick, S. E. Structure 1998, 6, 1467.
11. Cole, C.; Marks, D. S.; Jaffar, M.; Stratford, I. J.; Dou-
glas, K. T.; Freeman, S. Anti-Cancer Drug Des. 1999, 14, 411.
12. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.;
Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E.
Nucleic Acids Res. 2000, 28, 235.
13. Bairoch, A.; Apweiler, R. Nucleic Acids Res. 2000, 28, 45.
SWISS-MODEL.html).
15. Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Lis-
kamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson,
T.; Still, W. C. J. Comput. Chem. 1990, 11, 440.
16. Jaguar, Ver. 4.0. Schrodinger: Portland, OR, 2000.
17. Kolossvary, I.; Guida, W. C. J. Am. Chem. Soc. 1996, 118,
5011.
18. Kolossvary, I.; Guida, W. C. J. Comput. Chem. 1999, 20,
1671.
19. Elliott, R. L.; O’Hanlon, P. J.; Rogers, N. H. Tetrahedron
1987, 43, 3295.
20. Jarvest, R. L.; Connor, S. C.; Gorniak, J. G.; Jennings,
L. J.; Serafinowska, H. T.; West, A. Bioorg. Med. Chem. Lett.
1997, 7, 1733.
21. Stanovnik, B.; Tisler, M. Synthesis 1972, 308.
22. Snider, B. B.; O’Hare, S. M. Tetrahedron Lett. 2001, 42,
2455.
23. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.;
Thornton, J. M. J. Appl. Cryst. 1993, 26, 283.
24. Wataya, Y.; Santi, D. W. Anal. Biochem. 1981, 112, 96.
25. Hirota, K.; Sawada, M.; Sajiki, H.; Sako, M. Nucleic
Acids Symposium Series 1997, 37, 59.
In summary, we have designed a novel class of TP
inhibitors based on the structural features of known
inhibitors and on the mechanism of catalysis. We have
also built the first homology model of human TP in the
active conformation, and have performed flexible dock-
ing studies using this model in order to analyze the
details of ligand binding. In addition, these results help
rationalize the experimental binding affinities and will
assist further lead optimization studies. Finally, this
novel class of ‘purine-like’ compounds may find utility
as nucleoside mimics with inhibitory activity against
other therapeutic targets.
26. Balzarini, J.; Gamboa, A. E.; Esnouf, R.; Liekens, S.;
Neyts, J.; De Clercq, E.; Camarasa, M. J.; Perez-Perez, M. J.
FEBS Lett. 1998, 438, 91.
Acknowledgements
We thank Professor Steve Ealick of Cornell University
for numerous helpful discussions.
27. Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson,
T. J. Am. Chem. Soc. 1990, 112, 6127.