D
C.-B. Chen et al.
Letter
Synlett
References and Notes
(c) Hong, X.; Wang, H.; Qian, G.; Tan, Q.; Xu, B. J. Org. Chem.
2014, 79, 3228. (d) Su, W.; Gong, T.-J.; Xiao, B.; Fu, Y. Chem.
Commun. 2015, 51, 11848. (e) Boultadakis-Arapinis, M.;
Hopkinson, M. N.; Glorius, F. Org. Lett. 2014, 16, 1630.
(1) (a) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C.
J. Med. Chem. 2010, 53, 7902. (b) Seeberger, L. C.; Hauser, R. A.
Expert Rev. Neurother. 2009, 9, 929. (c) De Clercq, E. Expert Opin.
Emerging Drugs 2005, 10, 241.
(2) (a) Palomo, C.; Aizpurua, J. M.; García, J. M.; Ganboa, I.; Cossio, F.
P.; Lecea, B.; Lōpez, C. J. Org. Chem. 1990, 55, 2498. (b) Kojima,
S.; Fukuzaki, T.; Yamakawa, A.; Murai, Y. Org. Lett. 2004, 6, 3917.
(c) Palomo, C.; Aizpurua, J. M.; Aurrekoetxea, N. Tetrahedron
Lett. 1990, 31, 2209.
(3) (a) Zhang, T. Y.; O’Toole, J. C.; Dunigan, J. M. Tetrahedron Lett.
1998, 39, 1461. (b) Kojima, S.; Kawaguchi, K.; Matsukawa, S.;
Uchida, K.; Akiba, K. Chem. Lett. 2002, 31, 170. (c) Fang, F.; Li, Y.;
Tian, S.-K. Eur. J. Org. Chem. 2011, 2011, 1084. (d) Ando, K.;
Okumura, M.; Nagaya, S. Tetrahedron Lett. 2013, 54, 2026.
(4) Zhou, S.; Addis, D.; Das, S.; Junge, K.; Beller, M. Chem. Commun.
2009, 4883.
(12) For Pd-catalyzed C–H activation reactions of alkenes, see:
(a) Wen, Z.-K.; Xu, Y.-H.; Loh, T.-P. Chem. Sci. 2013, 4, 4520.
(b) Shang, X.; Liu, Z.-Q. Chem. Soc. Rev. 2013, 42, 3253. (c) Bai,
Y.; Zeng, J.; Cai, S.; Liu, X.-W. Org. Lett. 2011, 13, 4394.
(d) Gigant, N.; Gillaizeau, I. Org. Lett. 2012, 14, 3304. (e) Chen,
Y.; Wang, F.; Jia, A.; Li, X. Chem. Sci. 2012, 3, 3231. (f) Moon, Y.;
Kwon, D.; Hong, S. Angew. Chem. Int. Ed. 2012, 51, 11333.
(g) Min, M.; Kim, Y.; Hong, S. Chem. Commun. 2013, 49, 196.
(13) For Ru-catalyzed C–H activation reactions of alkenes, see: (a) Li,
F.; Yu, C.; Zhang, J.; Zhong, G. Org. Lett. 2016, 18, 4582. (b) Wu,
J.; Xu, W.; Yu, Z.-X.; Wang, J. J. Am. Chem. Soc. 2015, 137, 9489.
(14) (a) Kong, X.; Xu, B. Org. Lett. 2018, 20, 4495. (b) Yu, D.-G.;
Gensch, T.; de Azambuja, F.; Vásquez-Céspedes, S.; Glorius, F.
J. Am. Chem. Soc. 2014, 136, 17722.
(5) (a) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc.
2007, 129, 2428. (b) Minami, Y.; Yoshiyasu, H.; Nakao, Y.;
Hiyama, T. Angew. Chem. Int. Ed. 2013, 52, 883. (c) Yang, X.; Arai,
S.; Nishida, A. Adv. Synth. Catal. 2013, 355, 2974. (d) Cheng, Y.-
n.; Duan, Z.; Yu, L.; Li, Z.; Zhu, Y.; Wu, Y. Org. Lett. 2008, 10, 901.
(6) (a) Crowe, W. E.; Goldberg, D. R. J. Am. Chem. Soc. 1995, 117,
5162. (b) Randl, S.; Gessler, S.; Wakamatsu, H.; Blechert, S.
Synlett 2001, 430.
(7) (a) Yamaguchi, K.; Fujiwara, H.; Ogasawara, Y.; Kotani, M.;
Mizuno, N. Angew. Chem. Int. Ed. 2007, 46, 3922. (b) Ishihara, K.;
Furuya, Y.; Yamamoto, H. Angew. Chem. Int. Ed. 2002, 41, 2983.
(8) (a) Pradal, A.; Evano, G. Chem. Commun. 2014, 50, 11907.
(b) Alterman, M.; Hallberg, A. J. Org. Chem. 2000, 65, 7984.
(c) Saha, D.; Adak, L.; Mukherjee, M.; Ranu, B. C. Org. Biomol.
Chem. 2012, 10, 952. (d) Powell, K. J.; Han, L.-C.; Sharma, P.;
Moses, J. E. Org. Lett. 2014, 16, 2158.
(9) (a) Wang, Z.; Chang, S. Org. Lett. 2013, 15, 1990. (b) Zhang, Z.;
Liebeskind, L. S. Org. Lett. 2006, 8, 4331. (c) Anbarasan, P.;
Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 519.
(10) For some reviews on C–H activation, see: (a) Kim, D.-S.; Park,
W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977. (b) Kim, H.; Chang,
S. ACS Catal. 2016, 6, 2341. (c) Liu, J.-D.; Chen, G.-S.; Tan, Z. Adv.
Synth. Catal. 2016, 358, 1174. (d) Ma, C.; Fang, P.; Mei, T.-S. ACS
Catal. 2018, 8, 7179. (e) Qin, Y.; Zhu, L.-H.; Luo, S.-Z. Chem. Rev.
2017, 117, 9433. (f) Kärkäs, M. D. Chem. Soc. Rev. 2018, 47, 5786.
(11) For Rh-catalyzed C–H activation reactions of alkenes, see:
(a) Feng, C.; Feng, D.; Loh, T.-P. Chem. Commun. 2015, 51, 342.
(b) Chaitanya, M.; Anbarasan, P. Org. Lett. 2015, 17, 3766.
(15) (a) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011,
40, 5049. (b) López, R.; Palomo, C. Angew. Chem. Int. Ed. 2015,
54, 13170.
(16) Wang, R.; Falck, J. R. Chem. Commun. 2013, 49, 6516.
(17) For selected reviews, see: (a) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc.
Chem. Res. 2015, 48, 886. (b) Ackermann, L. J. Org. Chem. 2014,
79, 8948. (c) Nakao, Y. Chem. Rec. 2011, 11, 242. (d) Gao, K.;
Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208. (e) Moselage, M.; Li,
J.; Ackermann, L. ACS Catal. 2016, 6, 498.
(18) (a) Chen, Z.-B.; Zhang, Y.; Yuan, Q.; Zhang, F.-L.; Zhu, Y.-M.;
Shen, J.-K. J. Org. Chem. 2016, 81, 1610. (b) Chen, Z.-B.; Zhang, F.-
L.; Yuan, Q.; Chen, H.-F.; Zhu, Y.-M.; Shen, J.-K. RSC Adv. 2016, 6,
64234. (c) Shi, Y.-L.; Yuan, Q.; Chen, Z.-B.; Zhang, F.-L.; Liu, K.;
Zhu, Y.-M. Synlett 2017, 29, 359.
(19) 3-Phenyl-3-pyridin-2-ylacrylonitrile; Typical Procedure
A solution of 1a (0.50 mmol), -iminonitrile 2a (139.5 mg, 0.75
mmol), and Cu(TFA)2 (1.0 mmol) in THF (2.0 mL) was stirred at
120 °C for 24 h, then cooled to r.t. The solvent was then evapo-
rated in vacuo, and the residue was purified by column chroma-
tography [silica gel, PE–EtOAc (9:1)] to give a brown oil; yield:
75 mg (73%).1H NMR (400 MHz, CDCl3): = 8.7 (d, J = 3.6 Hz, 1
H), 7.8 (t, J = 7.3 Hz, 1 H), 7.5 (d, J = 7.8 Hz, 1 H), 7.4–7.3 (m, 4 H),
7.3 (d, J = 7.2 Hz, 2 H), 5.8 (s, 1 H). 13C NMR (151 MHz, CDCl3):
= 161.2 (s), 155.1 (s), 150.0 (s), 137.7 (s), 136.8 (s), 130.5 (s),
128.8 (s), 128.4 (s), 125.0 (s), 124.4 (s), 117.4 (s), 97.3.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–D