Journal of the American Chemical Society
Page 4 of 5
(9) Cohen, S. M. Chem. Rev. 2012, 112, 970.
could lead to our being able to functionalize the surfaces and inte-
riors of porous materials in a differentiated manner.
(10) (a) Li, T.; Kozlowski, M. T.; Doud, E. A.; Blakely, M. N.; Rosi, N.
L. J. Am. Chem. Soc. 2013, 135, 11688; (b) Jeong, S.; Kim, D.; Song, X.;
Choi, M.; Park, N.; Lah, M. S. Chem. Mater. 2013, 25, 1047; (c) Bury, W.;
Fairen-Jimenez, D.; Lalonde, M. B.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T.
Chem. Mater. 2013, 25, 739; (d) Kim, M.; Cahill, J. F.; Su, Y.; Prather, K.
A.; Cohen, S. M. Chem. Sci. 2012, 3, 126; (e) Kim, M.; Cahill, J. F.; Fei,
H.; Prather, K. A.; Cohen, S. M. J. Am. Chem. Soc. 2012, 134, 18082; (f)
Karagiaridi, O.; Bury, W.; Sarjeant, A. A.; Stern, C. L.; Farha, O. K.; Hupp,
J. T. Chem. Sci. 2012, 3, 3256; (g) Burnett, B. J.; Barron, P. M.; Hu, C.;
Choe, W. J. Am. Chem. Soc. 2011, 133, 9984.
(11) (a) Deshpande, R. K.; Minnaar, J. L.; Telfer, S. G. Angew. Chem.
Int. Ed. 2010, 49, 4598; (b) Lun, D. J.; Waterhouse, G. I. N.; Telfer, S. G.
J. Am. Chem. Soc. 2011, 133, 5806; (c) Deshpande, R. K.; Waterhouse, G.
I. N.; Jameson, G. B.; Telfer, S. G. Chem. Commun. 2012, 48, 1574; (d)
Rankine, D.; Avellaneda, A.; Hill, M. R.; Doonan, C. J.; Sumby, C. J. Chem.
Commun. 2012, 48, 10328.
1
2
3
4
5
6
7
8
Complete experimental of new compounds and crystallographic
data of the prepared MOFs including CIF files. The Supporting
InfThis information is available free of charge via the Internet at
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Shultz, A. M.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Nguyen,
S. T. J. Am. Chem. Soc. 2011, 133, 13252.
(13) (a) Mir, M. H.; Koh, L. L.; Tan, G. K.; Vittal, J. J. Angew. Chem.
Int. Ed. 2010, 49, 390; (b) Burrows, A. D.; Hunter, S. O.; Mahon, M. F.;
Richardson, C. Chem. Commun. 2013, 49, 990.
The authors declare no competing financial interest.
(14) (a) Karagiaridi, O.; Lalonde, M. B.; Bury, W.; Sarjeant, A. A.;
Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2012, 134, 18790; (b) Takaishi,
S.; DeMarco, E. J.; Pellin, M. J.; Farha, O. K.; Hupp, J. T. Chem. Sci. 2013,
4, 1509.
(15) (a) RCM in small molecule synthesis. See: Nicolaou, K. C.; King,
N. P.; He, Y. Top. Organomet. Chem. 1998, 1, 73; (b) Polymerizations. See:
Bielawski, C. W.; Grubbs, R. H.; Angew. Chem. Int. Ed. Engl. 2000, 39,
2903; (c) Mol, J. C. J. Mol. Catal. A: Chemical 2004, 213, 39; (d) Nuyken,
O.; Mueller, B. Des. Monomers Polym. 2004, 7, 215.
(16) Although other catalysts can be used for olefin metathesis, this re-
port will focus on the Ru-based catalysts popularized by Grubbs.
(17) (a) Calderon, N.; Chen, H. Y.; Scott, K. W. Tetrahedron Lett. 1967,
8, 3327; (b) Grubbs, R. H. Tetrahedron 2004, 60, 7117.
(18) (a) Katz, T. J.; Rothchild, R. J. Am. Chem. Soc. 1976, 98, 2519; (b)
Bonifacio, M. C.; Robertson, C. R.; Jung, J.-Y.; King, B. T. J. Org. Chem.
2005, 70, 8522; (c) van Otterlo, W. A. L.; de Koning, C. B. Chem. Rev.
2009, 109, 3743.
(19) (a) Iuliano, A.; Piccioli, P.; Davide, F. Org. Lett. 2004, 6, 3711; (b)
Donohoe, T. J.; Orr, A. J.; Bingham, M. Angew. Chem. Int. Ed. 2006, 45,
2664.
(20) Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T. J. Am.
Chem. Soc. 2009, 132, 950.
(21) Although this compound contains some of the mono-Br-mono-NO2
derivative, it still leads to the formation of the non-interpenetrated MOF.
(22) Crystals isolated from the reaction were washed with DCE, dried,
suspended in CD3SOCD3 and dissolved using a few drops of D2SO4. This
procedure destroys the framework and allows the characterization of its
constituents by 1H NMR spectroscopy.
(23) Starting form the divinyldipyridyl linker 3 or the tetravinyldipyridyl
linker 6, direct attempts to synthesize SALEM-13 or SALEM-14, respec-
tively, were not successful, validating the SALE approach.
(24) The 4-chloro-3-vinylpyridine intermediate was purified by silica gel
plug filtration and carried forward without further purification. This inter-
mediate is volatile and purification simply results in loss of product.
(25) It should be noted that the yield (50%) for the Miyaura borylation
is low because of technical issues that had to be confronted during purifica-
tion of the product. Silica gel chromatography with 0—5% EtOAc/hexanes
was not efficient and the product had to be crystallized from hot hexanes.
(26) This catalyst was found to be the most reliable at producing product.
(27) When significant amounts of pyridine are used in relation to the
catalyst, reactivity can be impaired. See: (a) Slugovc, C.; Demel, S.; Stelzer,
F. Chem. Commun. 2002, 2572; (b) Conrad, J. C.; Fogg, D. E. Curr. Org.
Chem. 2006, 10, 185.
(28) In comparison with the structural transformation from Br-YOMOF
to SALEM-13 where 2θ = 3.94 (Figure 1a/b), 2θ = 4.76 (Figure 2a/b) on
going from Br-YOMOF to SALEM-14, indicating the incorporation of a
shorter pillar, an observation which is in good agreement with the predicted
PXRD spectrum (Figure 2c).
The authors thank our joint collaborators Dr. Turki S. Al-Saud and
Dr. Nezar H. Khdary from the King Abdulaziz City of Science and
Technology (KACST) in Saudi Arabia for their interest in this re-
search program. O.K., J.T.H., and O.K.F. gratefully acknowledge
financial support from U.S. Dept. of Energy, Office of Science,
Basic Energy Sciences program (grant no. DE-FG02-08ER15967).
(1) (a) Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozyn, J. M.; Brown,
C. M.; Long, J. R. Science 2012, 335, 1606; (b) Farha, O, K.; Eryazici, I.;
Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.;
T. Nguyen S. T.; Yazaydın, A. O.; Hupp, J. T. J. Am. Chem. Soc. 2012, 134,
15016; (c) Canivet, J.; Aguado, S.; Schuurman, Y.; Farrusseng, D. J. Am.
Chem. Soc. 2013, 135, 4195;
(2) (a) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour,
J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040; (b) Ma, B-.Q.; Mul-
fort, K. L.; Hupp, J. T.; Inorg. Chem. 2005, 44, 4912; (c) Hasegawa, S.;
Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kita-
gawa, S. J. Am. Chem. Soc. 2007, 129, 2607; (d) Nouar, F.; Eubank, J. F.;
Bousquet, T.; Wojtas, L.; Zaworotko, J. M.; Eddaoudi, M. J. Am. Chem.
Soc. 2008, 130, 1833; (e) Yan, Y.; Lin, X.; Yang S.; Blake, A.; Dailly, A.;
Champness, N. R.; Hubberstey P.; Schrӧder, M. Chem. Commun. 2009,
1025.
(3) (a) Férey, G. Chem. Soc. Rev. 2008, 37, 191; (b) Tranchemontagne,
D. J.; Mendoza-Cortes, J. L.; O'Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev.
2009, 38, 1257; (c) Horike, S.; Shimomura, S.; Kitagawa, S. Nat. Chem.
2009, 1, 695; (d) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166;
(e) Jiang, H.-L.; Xu, Q. Chem. Commun. 2011, 47, 3351.
(4) (a) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38,
1477; (b) Herm, Z. R.; Wiers, B. M.; Mason, J. A.; van Baten, J. M.; Hud-
son, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J.
R. Science 2013, 340, 960.
(5) (a) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne,
R. P.; Hupp, J. T. Chem. Rev. 2011, 112, 1105; (b) Allendorf, M. D.; Bauer,
C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38, 1330.
(6) (a) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.;
Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450; (b) Ma, L.; Abney, C.; Lin, W.
Chem. Soc. Rev. 2009, 38, 1248; (c) Corma, A.; Garcꢀa, H.; Llabrꢁs i Xa-
mena, F. X. Chem. Rev. 2010, 110, 4606.
(7) (a) Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle,
F.; Férey, G. Angew. Chem. Int. Ed. 2006, 45, 5974; (b) An, J.; Geib, S. J.;
Rosi, N. L. J. Am. Chem. Soc. 2009, 131, 8376; (c) Horcajada, P.; Chalati,
T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.;
Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Marsaud, V.; Bories,
P.-N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater.
2010, 9, 172.
(8) Qin, L.; Hu, J.; Zhang, M.; Y, Q.; Li, Y.; Zheng, H. Cryst. Growth
Des. 2013, 13, 2111.s
4
ACS Paragon Plus Environment