LETTER
Stereoselective Synthesis of (Z)-Enynes
1475
(4) (a) Alami, M.; Linstrumelle, G.; Tetrahedron Lett. 1991, 32,
6109. (b) Alami, M.; Peyrat, J.-F.; Brion, J.-D. Synthesis 2000,
1499.
(5) Dieck, H. A.; Heck, F. R. J. Organome. Chem. 1975, 93, 259.
(6) Scott, W. J.; Peña, M. R.; Sward, K.; Stoessel, S. J.; Stille, J.
K. J. Org. Chem. 1985, 50, 2302.
(7) Alami, M.; Crousse, B.; Ferri, F. J. Organomet. Chem. 2001,
624, 114.
(8) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am.
Chem. Soc. 1985, 107, 972.
Thus, the optimum condition for the coupling in Scheme
1 was found to be the use of PdCl2(10 mol%)/CuI (10
mol%), MeOH (10 mL), (Z)-bis-vinylic telluride 1 (1
mmol), the appropriate alkyne 2 (2 mmol) and Et3N (1
mmol) at 25 C.17 Extending the coupling reaction to other
alkynes, various Z-enynes 3 were obtained in good yields
(Table 2). Although in all cases an excess of alkyne was
used, the transfer of only one vinylic group was observed.
The formation of the enynes was confirmed by the analy-
sis of the 1H NMR spectrum. The stereoisomeric purities
of the enynes 3a-j were similar to that of starting bis-vi-
nylic tellurides 1,18 due to a complete retention of config-
uration in this type of reaction. The stereochemistry of the
obtained enynes was easily established. As an example,
the 1H NMR spectrum of compound 3d, showed a double
triplet at 5.75 ppm with coupling constants of 12 Hz and
2 Hz, typical of cis positioned hydrogen (hydrogen at car-
bon 4). The hydrogen at carbon 5 resonates at 6.63 ppm as
a doublet with coupling constant of 12 Hz.
(9) (a) Normant, J. F.; Commerçon, A.; Villièras, J. Tetrahedron
Lett. 1975, 1465. (b) Alexakis, A.; Cahiez, G.; Normant, J. F.;
Synthesis 1979, 826.
(10) Magriotis, P. A.; Scott, M. E.; Kim, K. D. Tetrahedron Lett.
1991, 32, 6085.
(11) Negishi, E. I.; Okukado, N.; King, A. O.; Van Horn, D. E.;
Spiegel, B. I. J. Am. Chem. Soc. 1978, 100, 2254.
(12) Dang, H. P.; Linstrumelle, G. Tetrahedron Lett. 1978, 191.
(13) Barros, S. M.; Dabdoub, M. J.; Dabdoub, V. B.; Comasseto, J.
V. Organometallics 1989, 8, 1661.
(14) Dabdoub, M. J.; Dabdoub, V. B. Tetrahedron 1995, 51, 9839.
(15) (a) Barrientos-Astigarraga, R. E.; Moraes, D. N.; Comasseto,
J. V. Tetrahedron Lett. 1999, 40, 265. (b) De Araujo, M. A.;
Comasseto, J. V. Synlett 1995, 1145.
(16) Zeni, G.; Comasseto, J. V. Tetrahedron Lett. 1999, 40, 4619.
(17) Pd(II) Catalyzed Cross-Coupling Reaction of (Z)-Bis-
Vinylic Tellurides with Alkynes: General Procedure: To a
solution of PdCl2 (10 mol%, 0.018 g), CuI (10 mol%, 0.02 g)
in MeOH (10 mL) at 25 C. under an argon atmosphere, were
added (Z)-bis-vinylic telluride 1 (1 mmol, 0.33 g) and the
appropriate alkyne (2 mmol). The mixture was stirred at room
temperature for the time indicated in Table 1, treated with
NH4Cl saturated solution (5 mL), extracted with ethyl acetate.
The organic layer was washed with brine and dried over
MgSO4. The solvent were evaporated and the residue was
purified by flash silica-gel chromatography eluting with
hexane (products 3h m) or hexane/ethyl acetate 7:3 (products
3a g) to give the product 3. Selected spectral and analytical
data for 3d: Yield 0.13 g (85%); 200 MHz 1H NMR (CDCl3)
= 7.83-7.27 (m, 5H), 6.63 (d, J = 12 Hz, 1H), 5.75 (dt,
J = 12.0, 2.0 Hz, 1H), 4.46 (d, J = 2 Hz, 2H), 2.10 (s, 1H); 50
MHz 13C NMR (CDCl3) = 139.10, 136.15, 132.55, 128.55,
128.25, 106.70, 93.80, 84.00, 51.70; IR (neat, cm-1) 3370,
3060, 2200, 1660, 786; LRMS (rel. int.) m/z 158 (15), 140
(19), 102 (100), 77 (30).
In summary, we have explored the Pd(II)/CuI catalyzed
cross-coupling reaction of the (Z)-bis-vinylic tellurides
with alkynes and established a new stereoselective route
to (Z)-enynes in good yields. Our approach is improved
compared to described methodologies, avoiding the prep-
aration of vinyl metals, haloalkynes or protection of hy-
droxyl group in propargylic alcohol. In comparison to our
previously described methodology the procedure has the
advantage of easy access and great stability of (Z)-bis-vi-
nylic tellurides. The use of this methodology for the syn-
thesis of polyacetylenic compounds is under study in our
laboratory. 19,20
Acknowledgement
The authors thank the following agencies for support: FAPERGS,
CNPq and FAPESP (98/10821-0). Professor Lothar W. Bieber (UF-
PE) is acknowledge for the revision of this manuscript.
References and Notes
(18) (a) Tucci, F. C.; Chieffi, A.; Comasseto, J. V. J. Org. Chem.
1996, 61, 4975. (b) Silveira, C. C.; Perin, G.; Boeck, P.; Braga,
A. L.; Petragnani, N. J. Organomet. Chem. 1999, 584, 44.
(19) Zeni, G.; Panatieri, R. B.; Lissner, E.; Menezes, P. H.; Braga,
A. L.; Stefani, H. A. Org. Lett. 2001, 3, 819.
(1) Nicolaou, K. C.; Smith, A. L. in: Stang, P. J.; Diederich, F.
(Eds.), Modern Acetylene Chemistry, VCH, Weinheim 1995.
(2) (a) Grissom J. W.; Gunawardena, G. U.; Klingberg, D.;
Huang, D. Tetrahedron 1996, 52, 6453. (b) Nicolaou, K. C.;
Daí, W. M. Angew. Chem. Int. Ed. Engl. 1991, 30, 1387.
(3) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 4467.
(20) Stefani, H. A.; Costa, I. M.; Zeni G. Tetrahedron Lett. 1999,
40, 9215.
Article Identifier:
1437-2096,E;2001,0,09,1473,1475,ftx,en;S04201ST.pdf
Synlett 2001, No. 9, 1473–1475 ISSN 0936-5214 © Thieme Stuttgart · New York