JIN ET AL.
9 of 10
[3] a) L. J. Song, T. Wang, X. Zhang, L. W. Chung, Y. D. Wu, ACS
Catal. 2017, 7, 1361; b) S. Kisan, V. Krishnakumar, C.
Gunanathan, ACS Catal. 2017, 7, 5950; c) A. Kaithal, B. Chat-
terjee, C. Gunanathan, Org. Lett. 2015, 17, 4790; d) M. J. Sgro,
D. W. Stephan, Angew. Chem. Int. Ed. 2012, 51, 11343. Angew.
Chem. 2012, 124, 11505
environmentand stirred at roomtemperatureandthe prog-
ress was followed by 1H NMR and 13C NMR spectroscopy.
Compound 1 (0.01 or 0.02 mmol) was added to a
solution of aldehyde (1 mmol) or ketone (1 mmol) with
HBpin (0.15 ml, 1 mmol) in C6D6 (1 ml) under nitrogen
atmosphere. The mixture was placed in a sealed environ-
ment and stirred at room temperature. The reaction was
terminated by exposing the mixture to air. The conversion
was determined by 1H NMR and 13C NMR spectroscopy.
Hydroboration of aldehydes and ketones catalyzed by
compounds 2–7 was conducted using a similar method to
that mentioned above.
[4] a) Z. Huang, D. Liu, J. C. Bunquin, G. Zhang, D. Yang, J. M.
López‐Encarnación, Y. Xu, M. S. Ferrandon, J. Niklas, O. G.
Poluektov, J. Jellinek, A. Lei, E. E. Bunel, M. Delferro, Organ-
ometallics 2017, 36, 3921; b) A. A. Oluyadi, S. Ma, C. N.
Muhoro, Organometallics 2013, 32, 70; c) F. Almqvist, L.
Torstensson, A. Gudmundsson, T. Frejd, Angew. Chem. Int.
Ed. Engl. 1997, 36, 376. Angew. Chem. 1997, 109, 388
[5] a) W. J. Jang, S. M. Song, J. H. Moon, Y. L. Jin, J. Yun, J. Am.
Chem. Soc. 2017, 139, 13660; b) E. A. Romero, R. Jazzar, G.
Bertrand, J. Organometal. Chem. 2017, 829, 11; c) N. Daiki, H.
Koji, M. Masahiro, Org. Lett. 2016, 18, 4856; d) S. Bagherzadeh,
N. P. Mankad, Chem. Commun. 2016, 52, 3844.
4 | CONCLUSIONS
In summary, seven novel aluminium complexes sup-
ported by Schiff bases have been synthesized and fully
characterized. The possible mechanism for the synthesis
of 1 was investigated. The catalytic performances of all
complexes towards hydroboration of aldehydes and
ketones were evaluated. Compound 4 exhibits the highest
catalytic activity among the seven complexes. Moreover,
complexes 3–7 are interesting precursors for the prepara-
tion of new aluminium compounds. We are concentrat-
ing on synthesizing some novel compounds based on
these and expanding their applications.
[6] a) J. L. Lortie, T. Dudding, B. Gabidullin, G. I. Nikonov, ACS
Catal. 2017, 7, 8454; b) M. S. Hill, D. J. Liptrot, C. Weetman,
Chem. Soc. Rev. 2016, 45, 972; c) C. Weetman, M. S. Hill, M.
F. Mahon, Chem. Commun. 2015, 51, 14477.
[7] a) D. Mukherjee, H. Osseili, T. P. Spaniol, J. Okuda, J. Am.
Chem. Soc. 2016, 138, 10790; b) D. Mukherjee, S. Shirase, T.
P. Spaniol, K. Mashima, J. Okuda, Chem. Commun. 2016, 52,
13155.
[8] a) D. Mukherjee, A. Ellern, A. D. Sadow, Chem. Sci. 2014, 5,
959; b) M. Arrowsmith, M. S. Hill, G. Kociok‐Kohn, Chem.
Eur. J. 2013, 19, 2776; c) M. Arrowsmith, T. J. Hadlington, M.
S. Hill, G. Kociok‐Kohn, Chem. Commun. 2012, 48, 4567.
[9] T. J. Hadlington, M. Hermann, G. Frenking, C. Jones, J. Am.
Chem. Soc. 2014, 136, 3028.
ACKNOWLEDGMENTS
[10] a) A. Bismuto, M. J. Cowley, S. P. Thomas, ACS Catal. 2018, 8,
2001; b) A. Bismuto, S. P. Thomas, M. J. Cowley, Angew. Chem.
Int. Ed. 2016, 55, 15356. Angew. Chem. 2016, 128, 15582; c) V.
K. Jakhar, M. K. Barman, S. Nembenna, Org. Lett. 2016, 18,
4710; d) G. I. Nikonov, ACS Catal. 2017, 7, 7257; e) B.
Prashanth, M. Bhandari, S. Ravi, K. R. Shamasundar, S. Singh,
Chem. Eur. J. 2018, 24, 4794. f) W. Li, X. Ma, M. G. Walawalkar,
Z. Yang, H. W. Roesky, Coord. Chem. Rev. 2017, 350, 14.
We gratefully acknowledge financial support of this work
by the National Nature Science Foundation of China
(21671018, 21872005).
ORCID
[11] Z. Yang, M. Zhong, X. Ma, S. De, C. Anusha, P. Parameswaran,
H. W. Roesky, Angew. Chem. Int. Ed. 2015, 54, 10225. Angew.
Chem. 2015, 127, 10363
REFERENCES
[12] a) N. Upadhayay, Chem. Sci. Trans. 2013, 2, 455; b) S. Mathews,
J. Coord. Chem. 2008, 61, 3913; c) D. J. Darensbourg, Chem.
Rev. 2007, 107, 2388.
[1] a) C. Zhang, M. Zhou, S. Liu, B. Wang, Z. Mao, H. Xu, Y.
Zhong, L. Zhang, B. Xu, X. Sui, Carbohydr. Polym. 2018, 191,
17; b) J. W. B. Fyfe, A. J. B. Watson, Chem. Rev. 2017, 3, 31;
c) A. B. Cuenca, R. Shishido, H. Ito, E. Fernández, Chem.
Soc. Rev. 2017, 46, 415; d) J. Zhang, Z. Xie, Acc. Chem. Res.
2014, 47, 1623.
[13] a) L. Li, B. Liu, D. Liu, C. Wu, S. Li, B. Liu, D. Cui, Organome-
tallics 2014, 33, 6474; b) S. M. Kirk, H. C. Quilter, A. Buchard,
L. H. Thomas, G. Kociok‐Kohn, M. D. Jones, Dalton Trans.
2016, 45, 13846; c) M. A. Van Aelstyn, T. S. Keizer, D. L.
Klopotek, S. Liu, M. M. Hernandez, P. Wei, D. A. Atwood,
Organometallics 2000, 19, 1796.
[2] a) L. Li, T. J. Gong, X. Lu, B. Xiao, Y. Fu, Nat. Commun. 2017,
8, 345; b) A. E. King, S. C. E. Stieber, N. J. Henson, S. A.
Kozimor, B. L. Scott, N. C. Smythe, A. D. Sutton, J. C. Gordon,
Eur. J. Inorg. Chem. 2016, 2016(11), 1635; c) R. J. Ely, Z. Yu, J.
P. Morken, Tetrahedron Lett. 2015, 56, 3402; d) S. Chakraborty,
J. Zhang, J. A. Krause, H. Guan, J. Am. Chem. Soc. 2010, 132,
8872.
[14] a) R. Prasad, P. P. Thankachan, M. T. Thomas, R. Pathak,
J. Indian Chem. Soc. 2001, 78, 28; b) A. M. Willcocks, A.
Gilbank, S. P. Richards, S. K. Brayshaw, A. J. Kingsley, R.
Odedra, A. L. Johnson, Inorg. Chem. 2011, 50, 937; c) G.
Karthikeyan, P. Pitchaimani, Transit. Met. Chem. 2003, 28, 482.