Organic Letters
Letter
Author Contributions
Gagare, P. D.; Ramachandran, P. V. Tetrahedron Lett. 2014, 55, 5736.
(g) Ambler, B. R.; Peddi, S.; Altman, R. A. Synthesis 2014, 46, 1938.
∥A.B. and G.H.L. contributed equally.
(h) Ambler, B. R.; Peddi, S.; Altman, R. A. Org. Lett. 2015, 17, 2506.
Notes
(i) Ji, Y.-L.; Luo, J.-J.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. Org. Lett. 2016,
1
(
(
(
4
8, 1000. See also refs 5b and 5d.
13) For selected recent selected reviews on gold catalysis:
a) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902.
b) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014,
7, 889. (c) Friend, C. M.; Hashmi, A. S. K. Acc. Chem. Res. 2014, 47,
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We are deeply appreciative of financial support from the Ecole
■
Polytechnique, Universite
FNRS (FRIA grant for A. Boreux) and thank Rhodia Chimie
Fine (Dr. F. Metz) for a generous gift of HNTf2.
́
Catholique de Louvain (UCL),
729. (d) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028.
(e) Jia, M.; Bandini, M. ACS Catal. 2015, 5, 1638. (f) Asiri, A. M.;
Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 4471.
(
14) For selected contributions from our group in the field of gold
catalysis, see: (a) Gronnier, C.; Boissonnat, G.; Gagosz, F. Org. Lett.
013, 15, 4234. (b) Henrion, G.; Chavas, T. E. J.; Le Goff, X.; Gagosz,
REFERENCES
■
2
(
1) (a) Thayer, A. M. Chem. Eng. News 2006, 84, 15. (b) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37,
F. Angew. Chem., Int. Ed. 2013, 52, 6277. (c) Prechter, A.; Henrion, G.;
Faudot dit Bel, P.; Gagosz, F. Angew. Chem., Int. Ed. 2014, 53, 4959.
3
20. (c) Wang, J.; Sanchez-Rosello, M.; Acena, J. N.; del Pozo, C.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev.
014, 114, 2432.
2) For selected recent reviews, see: (a) Barata-Vallejo, S.; Lantano,
(
15) Bolte, B.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. 2010,
32, 7294.
16) For selected gold-catalyzed reaction involving hydride transfers,
see: (a) Vasu, D.; Das, A.; Liu, R.-S. Chem. Commun. 2010, 46, 4115.
b) Bhunia, S.; Ghorpade, S.; Huple, D. B.; Liu, R.-S. Angew. Chem.,
Int. Ed. 2012, 51, 2939. (c) Barluenga, J.; Sigueiro, R.; Vicente, R.;
Ballesteros, A.; Tomas, M.; Rodríguez, M. Angew. Chem., Int. Ed. 2012,
1
(
2
(
B.; Postigo, A. Chem. - Eur. J. 2014, 20, 16806. (b) Chu, L.; Qing, F.-L.
Acc. Chem. Res. 2014, 47, 1513. (c) Alonso, C.; Martinez de Marigorta,
E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
(
̈
(
3) (a) Ye, J.; Ma, S. Acc. Chem. Res. 2014, 47, 989. (b) For a series
of reviews on the reactivity of allenes, see: Chem. Soc. Rev. 2014, 43,
879.
4) For a review on the use of allenes in synthesis, see: Yu, S.; Ma, S.
Angew. Chem., Int. Ed. 2012, 51, 3074.
5) (a) Coe, P. L.; Milner, N. E. J. Organomet. Chem. 1974, 70, 147.
b) Hung, M.-H. Tetrahedron Lett. 1990, 31, 3703. (c) Burton, D. J.;
Hartgraves, G. A.; Hsu, J. Tetrahedron Lett. 1990, 31, 3699.
d) Bouillon, J.-P.; Maliverney, C.; Merenyi, R.; Viehe, H. G. J.
5
2
1, 10377. (d) Wu, X.; Chen, S.-S.; Hu, Y.; Gong, L.-Z. Org. Lett.
014, 16, 3820. For the formation of allenes, see: (e) Lo, V. K.-Y.;
2
(
Wong, M.-K.; Che, C.-M. Org. Lett. 2008, 10, 517. See also:
f) Kuang, J.; Ma, S. J. Am. Chem. Soc. 2010, 132, 1786. (g) Lo, V. K.-
Y.; Zhou, C.-Y.; Wong, M.-K.; Che, C.-M. Chem. Commun. 2010, 46,
13. (h) Tang, X.; Zhu, C.; Cao, T.; Kuang, J.; Lin, W.; Ni, S.; Zhang,
(
(
2
(
J.; Ma, S. Nat. Commun. 2013, 4, 2450. (i) Jiang, G.-J.; Zheng, Q.-H.;
Dou, M.; Zhuo, L.-G.; Meng, W.; Yu, Z.-X. J. Org. Chem. 2013, 78,
(
́
1
(
2
(
1783.
17) Jurberg, I. D.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc.
010, 132, 3543.
18) Deuterated chloroform was used for convenience in order to
Chem. Soc., Perkin Trans. 1 1991, 2147. (e) Hu, C.-M.; Qing, F.-L.;
Huang, W.-Y. J. Org. Chem. 1991, 56, 2801. (f) Duan, J.-X.; Chen, Q.-
Y. J. Chem. Soc., Perkin Trans. 1 1994, 725. (g) Werner, H.; Laubender,
M.; Wiedemann, R.; Windmuller, B. Angew. Chem., Int. Ed. Engl. 1996,
monitor the course of the reactions and assess the crude yields of
products. CDCl can naturally be replaced by regular CHCl .
(
(
(
byproducts derived from an initial Au-catalyzed addition of H O on
the alkyne moiety.
(
3
5, 1237. (h) Werner, H.; Wiedemann, R.; Laubender, M.;
Windmuller, B.; Steinert, P.; Gevert, O.; Wolf, J. J. Am. Chem. Soc.
002, 124, 6966.
6) (a) Han, H. Y.; Kim, M. S.; Son, J. B.; Jeong, I. H. Tetrahedron
3
3
19) Bolte, B.; Gagosz, F. J. Am. Chem. Soc. 2011, 133, 7696.
20) For the synthesis and use of gold complex 7a, see ref 14b.
21) The presence of water in the solvent led to the formation of
2
(
Lett. 2006, 47, 209. (b) Yamazaki, T.; Yamamoto, T.; Ichihara, R. J.
Org. Chem. 2006, 71, 6251. (c) Sam, B.; Montgomery, T. P.; Krische,
M. J. Org. Lett. 2013, 15, 3790.
2
22) It is assumed that the presence of the more coordinating NTf −
2
(
7) (a) Watanabe, Y.; Yamazaki, T. J. Fluorine Chem. 2010, 131, 646.
counteranion lowers the electrophilicity of the gold complex thus
diminishing its ability to make possible the hydride transfer.
(
(
b) Yamazaki, T.; Watanabe, Y.; Yoshida, N.; Kawasaki-Takasuka, T.
23) Gold complex 6 degrades at 60 °C within a few hours. Complex
a exhibits higher stability (see ref 14b) and was therefore retained for
7
studying the scope of the reaction assuming that longer reaction times
might be necessary depending on the substrates.
(
Nolan, S. P. Angew. Chem., Int. Ed. 2006, 45, 3647.
(
(
Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328.
(
(
(
8) (a) Hanzawa, Y.; Kawagoe, K.- i.; Yamada, A.; Kobayashi, Y.
Tetrahedron Lett. 1985, 26, 219. (b) Johnson, D.; Rodriguez, A.;
Kennedy, G. D.; Krishnan, G. J. Heterocycl. Chem. 1994, 31, 871. (c) Li,
P.; Liu, Z.-J.; Liu, J.-T. Tetrahedron 2010, 66, 9729.
́
24) Marion, N.; Diez-Gonzales, S.; de Fremont, P.; Noble, A. R.;
25) Hoffmann-Ro
26) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.;
̈
der, A.; Krause, N. Org. Lett. 2001, 3, 2537.
(
9) (a) Watanabe, Y.; Yamazaki, T. Synlett 2009, 2009, 3352.
b) Aikawa, K.; Hioki, Y.; Mikami, K. Org. Lett. 2010, 12, 5716.
10) Pd-catalyzed reactions: (a) Sakamoto, T.; Takahashi, K.;
(
(
27) The reaction conditions were not optimized.
28) Yuan, W.; Ma, S. Adv. Synth. Catal. 2012, 354, 1867.
Yamazaki, T.; Kitazume, T. J. Org. Chem. 1999, 64, 9467. (b) Shimizu,
M.; Higashi, M.; Takeda, Y.; Jiang, G.; Murai, M.; Hiyama, T. Synlett
2
007, 2007, 1163. (c) Shimizu, M.; Higashi, M.; Takeda, Y.; Murai,
M.; Jiang, G.; Asai, Y.; Nakao, Y.; Shirakawa, E.; Hiyama, T. Future
Med. Chem. 2009, 1, 921. (d) Konno, T.; Tanikawa, M.; Ishihara, T.;
Yamanaka, H. Chem. Lett. 2000, 29, 1360.
(
11) Ag-catalyzed reaction: Liu, J.; Liu, Z.; Wu, N.; Liao, P.; Bi, X.
Chem. - Eur. J. 2014, 20, 2154.
12) (a) Burton, D. J.; Hartgraves, G. A. J. Fluorine Chem. 2009, 130,
54. (b) Zhao, T. S. N.; Szabo, K. J. Org. Lett. 2012, 14, 3966.
(
2
́
(
(
c) Jiang, X.; Qing, F.-L. Beilstein J. Org. Chem. 2013, 9, 2862.
d) Miyake, Y.; Ota, S.-I.; Shibata, M.; Nakajima, K.; Nishibayashi, Y.
Chem. Commun. 2013, 49, 7809. (e) Ji, Y.-L.; Kong, J.-J.; Lin, J.-H.;
Xiao, J.-C.; Gu, Y.-C. Org. Biomol. Chem. 2014, 12, 2903. (f) Li, G.;
D
Org. Lett. XXXX, XXX, XXX−XXX