Communication
1
ture to 130 °C, both valve positions were switched to place the phenylethynyl)heptyl]piperidine (252 mg, 0.89 mmol, 89 %). H
mixture inline. Solutions A and B were pumped towards a T-shaped
mixer, then into the 20 mL PTFE residence coil, and then through a
back-pressure regulator (BPR) rated to 6.9 bar (100 psi) at a flow
rate ensuring a 2 h residence time (0.17 mL min–1). The mixture
NMR (300 MHz, CDCl3): δ = 7.48–7.45 (m, 2 H), 7.34–7.28 (m, 3 H),
3.48 (dd, J = 9.0, 5.8 Hz, 1 H), 2.77–2.62 (m, 2 H), 2.57–2.43 (m, 2 H),
1.77–1.69 (m, 3 H), 1.67–1.53 (m, 5 H), 1.51–1.42 (m, 3 H), 1.38–1.27
(m, 6 H), 0.94–0.86 (m, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ =
was recovered and concentrated under reduced pressure. The crude 131.9, 128.3, 127.9, 123.8, 88.4, 85.7, 58.8, 50.7, 33.6, 31.9, 29.2, 27.0,
mixture was purified by flash column chromatography (gradient cy-
clohexane/EtOAc) to afford N-(1,3-diphenyl-2-propynyl)piperidine
(220 mg, 0.80 mmol, 80 %) as a yellow oil. 1H NMR (300 MHz, CDCl3):
δ = 7.65 (d, J = 7.2 Hz, 2 H), 7.53 (dd, J = 6.6, 3.0 Hz, 2 H), 7.40–7.30
(m, 6 H), 4.82 (s, 1 H), 2.58 (t, J = 5.1 Hz, 4 H), 1.66–1.57 (m, 4 H),
1.46 (q, J = 5.7 Hz, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 138.8,
131.9, 128.7, 128.4, 128.2, 127.6, 123.5, 88.0, 86.2, 62.5, 50.8, 26.3,
24.9 ppm.
26.3, 24.7, 22.8, 14.2 ppm.
Acknowledgments
Université de Montpellier, Centre National de la Recherche Sci-
entifique (CNRS), and French Ministry of Higher Education and
Research (grant to A. B.) are acknowledged for funding.
N-[1-(2,4,6-Trimethoxyphenyl)-3-phenylprop-2-yn-1-yl]piper-
idine (20): 2,4,6-Trimethoxybenzaldehyde (196 mg, 1.00 mmol,
1.0 equiv.), piperidine (119 μL, 1.20 mmol, 1.2 equiv.), phenylacet-
ylene (158 μL, 1.50 mmol, 1.5 equiv.), [Ag(IPr)2]PF6 (41.4 mg,
0.04 mmol, 0.04 equiv.), and MeOH (2 mL) were introduced into a
sealed reactor. The suspension was heated under microwave irradia-
tion at 110 °C for 4 h. After cooling to room temperature, the mix-
ture was filtered through Celite and concentrated under reduced
pressure. The crude mixture was purified by flash column chroma-
tography (gradient cyclohexane/EtOAc) to afford N-[1-(2,4,6-tri-
methoxyphenyl)-3-phenylprop-2-yn-1-yl]piperidine (330 mg,
0.90 mmol, 90 %) as a yellow oil. 1H NMR (300 MHz, CDCl3): δ =
7.47–7.41 (m, 2 H), 7.27–7.24 (m, 3 H), 6.17 (s, 2 H), 5.24 (s, 1 H),
3.84 (s, 6 H), 3.82 (s, 3 H), 2.70–2.57 (m, 4 H), 1.63–1.55 (m, 4 H),
1.42–1.34 (m, 2 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 160.9, 160.0,
131.8, 128.2, 127.5, 124.6, 124.4, 108.0, 91.8, 89.7, 56.3, 55.4, 51.6,
26.3, 24.5 ppm. HRMS: calcd. for C23H28NO3 [M + H]+ 366.2069;
found 366.2064.
Keywords: Alkynes · Amines · Carbenes · Silver ·
Multicomponent reactions · Continuous flow
[1] a) E. Vessally, A. Hosseinian, L. Edjlali, A. Bekhradnia, M. D. Esrafili, RSC
Adv. 2016, 6, 71662; b) E. Vessally, RSC Adv. 2016, 6, 18619; c) E. Vessally,
A. Hosseinian, L. Edjlali, A. Bekhradnia, M. D. Esrafili, RSC Adv. 2016, 6,
99781; d) K. Pericherla, P. Kaswan, K. Pandey, A. Kumar, Synthesis 2015,
47, 887; e) Y. Liu, ARKIVOC (Gainesville, FL, U.S.) 2014, 1.
[2] a) G. Abbiati, E. Rossi, Beilstein J. Org. Chem. 2014, 10, 481; b) V. A. Pesh-
kov, O. P. Pereshivko, E. V. Van der Eycken, Chem. Soc. Rev. 2012, 41, 3790;
c) W.-J. Yoo, L. Zhao, C.-J. Li, Aldrichim. Acta 2011, 44, 43; d) C. Wei, Z. Li,
C.-J. Li, Synlett 2004, 1472.
[3] a) T. T. T. Trang, D. S. Ermolat'ev, E. V. Van der Eycken, RSC Adv. 2015, 5,
28921; b) H.-B. Chen, Y. Zhao, Y. Liao, RSC Adv. 2015, 5, 37737; c) M. J.
Albaladejo, F. Alonso, Y. Moglie, M. Yus, Eur. J. Org. Chem. 2012, 3093; d)
M. J. Aliaga, D. J. Ramon, M. Yus, Org. Biomol. Chem. 2010, 8, 43.
[4] a) Q. Li, A. Das, S. Wang, Y. Chen, R. Jin, Chem. Commun. 2016, 52, 14298;
b) G. A. Price, A. K. Brisdon, K. R. Flower, R. G. Pritchard, P. Quayle, Tetrahe-
dron Lett. 2014, 55, 151; c) G. Villaverde, A. Corma, M. Iglesias, F. Sánchez,
ACS Catal. 2012, 2, 399; d) L. Abahmane, J. M. Köhler, G. A. Groß, Chem.
Eur. J. 2011, 17, 3005; e) C. Wei, C.-J. Li, J. Am. Chem. Soc. 2003, 125,
9584.
N-[1-(2-Phenylethynyl)heptyl]piperidine (23). By Microwave Ir-
radiation: Heptanal (140 μL, 1.00 mmol, 1.0 equiv.), piperidine
(109 μL, 1.10 mmol, 1.10 equiv.), phenylacetylene (116 μL,
1.10 mmol, 1.1 equiv.), [Ag(IPr)2]PF6 (41.4 mg, 0.04 mmol,
0.04 equiv.), and MeOH (2 mL) were introduced into a sealed reac-
tor. The suspension was heated under microwave irradiation at
110 °C for 30 min. After cooling to room temperature, the mixture
was filtered through Celite and concentrated under reduced pres-
sure. The crude mixture was purified by flash column chromatogra-
phy (gradient cyclohexane/EtOAc) to afford N-[1-(2-phenyleth-
ynyl)heptyl]piperidine (261 mg, 0.92 mmol, 92 %) as a yellow oil. By
Agitation at Room Temperature: Heptanal (140 μL, 1.00 mmol,
1.0 equiv.), piperidine (109 μL, 1.10 mmol, 1.10 equiv.), phenylacet-
ylene (116 μL, 1.10 mmol, 1.1 equiv.), and [Ag(IPr)2]PF6 (41.4 mg,
0.04 mmol, 0.04 equiv.) were dissolved in MeOH (2 mL), and the
mixture was agitated at room temperature for 12 h. The mixture
was filtered through Celite and concentrated under reduced pres-
sure. The crude mixture was purified by flash column chromatogra-
phy (gradient cyclohexane/EtOAc) to afford N-[1-(2-phenyleth-
ynyl)heptyl]piperidine (223 mg, 0.79 mmol, 79 %) as a yellow oil.
By Continuous Flow: Heptanal (140 μL, 1.00 mmol, 1.00 equiv.),
piperidine (109 μL, 1.10 mmol, 1.10 equiv.), phenylacetylene
(116 μL, 1.10 mmol, 1.10 equiv.), and [Ag(IPr)2]PF6 (41.4 mg,
0.04 mmol, 0.04 equiv.) were dissolved in MeCN (1 mL) and placed
in a vial. After setting the temperature to 130 °C, the valve position
was switched to place the mixture inline. The mixture then flowed
into the 10 mL PTFE residence coil and then through a back-pres-
sure regulator (BPR) rated to 6.9 bar (100 psi) at a flow rate ensuring
a 30 min residence time (0.33 mL min–1). The mixture was then
concentrated under reduced pressure and purified by flash column
chromatography (gradient cyclohexane/EtOAc) to afford N-[1-(2-
[5] a) C. Wei, Z. Li, C.-J. Li, Org. Lett. 2003, 5, 4473; b) M. Trose, M. Dell'Acqua,
T. Pedrazzini, V. Pirovano, E. Gallo, E. Rossi, A. Caselli, G. Abbiati, J. Org.
Chem. 2014, 79, 7311.
[6] X.-S. Tai, L.-L. Liu, Open Mater. Sci. J. 2015, 9, 1.
[7] a) Y. Zhang, P. Li, M. Wang, L. Wang, J. Org. Chem. 2009, 74, 4364; b)
H. N. K. Lam, N. B. Nguyen, G. H. Dang, T. Truong, N. T. S. Phan, Catal.
Lett. 2016, 146, 2087.
[8] L. Rubio-Pérez, M. Iglesias, J. Munárriz, V. Polo, J. J. Pérez-Torrente, L. A.
Oro, Chem. Eur. J. 2015, 21, 17701.
[9] S. Sakaguchi, T. Mizuta, M. Furuwan, T. Kubo, Y. Ishii, Chem. Commun.
2004, 1638.
[10] T. Zeng, W.-W. Chen, C. M. Cirtiu, A. Moores, G. Song, C.-J. Li, Green Chem.
2010, 12, 570.
[11] W.-W. Chen, H.-P. Bi, C.-J. Li, Synlett 2010, 475.
[12] a) Z. Zarei, B. Akhlaghinia, RSC Adv. 2016, 6, 106473; b) B. Jiang, Y.-G. Si,
Tetrahedron Lett. 2003, 44, 6767.
[13] A. S. K. Hashmi in Silver in Organic Chemistry (Ed.: M. Harmata), Wiley,
Hoboken, NJ, 2010, pp. 357.
[14] a) K. Mohan Reddy, N. Seshu Babu, I. Suryanarayana, P. S. Sai Prasad, N.
Lingaiah, Tetrahedron Lett. 2006, 47, 7563; b) B. Huang, X. Yao, C.-J. Li,
Adv. Synth. Catal. 2006, 348, 1528.
[15] a) A. Elhampour, M. Malmir, E. Kowsari, F. Boorboor ajdari, F. Nemati, RSC
Adv. 2016, 6, 96623; b) S. J. Borah, D. K. Das, Catal. Lett. 2016, 146, 656;
c) S. Wang, X. He, L. Song, Z. Wang, Synlett 2009, 447; d) A. Ghavami-
Nejad, A. Kalantarifard, G. S. Yang, C. S. Kim, Microporous Mesoporous
Mater. 2016, 225, 296.
[16] N. Salam, A. Sinha, A. S. Roy, P. Mondal, N. R. Jana, S. M. Islam, RSC Adv.
2014, 4, 10001.
[17] W.-J. Sun, F.-G. Xi, W.-L. Pan, E.-Q. Gao, J. Mol. Catal. A: Chem. 2017, 430,
36.
Eur. J. Org. Chem. 2017, 4642–4647
4646
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim