10.1002/anie.201709509
Angewandte Chemie International Edition
COMMUNICATION
[1]
[2]
J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H.
Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498-500.
a) A. Facchetti, Mater. Today 2013, 16, 123-132; b) H. Benten, D. Mori,
H. Ohkita, S. Ito, J. Mater. Chem. A, 2016, 4, 5340-5365; c) H. Kang, W.
Lee, J. Oh, T. Kim, C. Lee, B. J. Kim, Acc. Chem. Res., 2016, 49, 2424-
.2434.
Meanwhile, 2BO-based active layers show the characteristics of
larger domains with lengthscales notably greater than expected
Table 2. Space-Charge-Limited Current (SCLC) Carrier Mobility Estimates for
Optimized BHJ Thin Films with PBFTAZ and PIID[2F]Ts.
µh
µe
Acceptor
2BO
[cm2 V-1 s-1]
[cm2 V-1 s-1]
µh/µe
39
[3]
a) Z. Hu, L. Ying, F. Huang, Y. Cao, Sci. China. Chem., 2017, 60, 571-
582; b) J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan,
Nat. Energy 2016, 1, 15027.
3.9 × 10–4
4.1 × 10–4
1.3 × 10–4
1.0 × 10–5
2.9 × 10–5
3.8 × 10–6
a
2BO/2HD
2HD
14
[4]
[5]
T. Kim, J.-H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B.
Ma, U. Jeong, T.-S. Kim, B. J. Kim, Nat. Commun. 2015, 6, 8547.
a) Y.-J. Hwang, B. A. E. Courtright, A. S. Ferreira, S. H. Tolbert, S. A.
Jenekhe, Adv. Mater. 2015, 27, 4578-4584; b) J. W. Jung, J. W. Jo, C.-
C. Chueh, F. Liu, W. H. Jo, T. P. Russell, A. K. Y. Jen, Adv. Mater.
2015, 27, 3310-3317; c) X. Zhan, Z. Tan, B. Domercq, Z. An, X. Zhang,
S. Barlow, Y. Li, D. Zhu, B. Kippelen, S. R. Marder, J. Am. Chem. Soc.
2007, 129, 7246-7247; d) L. Gao, Z.-G. Zhang, L. Xue, J. Min, J. Zhang,
Z. Wei, Y. Li, Adv. Mater. 2016, 28, 1884-1890; e) S. Li, H. Zhang, W.
Zhao, L. Ye, H. Yao, B. Yang, S. Zhang, J. Hou, Adv. Energy Mater.
2015, 6, 1501991; f) Y. Guo, Y. Li, O. Awartani, H. Han, J. Zhao, H.
Ade, H. Yan, D. Zhao, Adv. Mater. 2017, 29, 1700309; g) B. Fan, L.
Ying, Z. Wang, B. He, X. Jiang, F. Huang, Y. Cao, Energy Environ. Sci.,
2017, 10, 1243-1251; h) Z. Li, X. Xu, W. Zhang, X. Meng, Z. Genene,
W. Ma, W. Mammo, A. Yartsev, M. R. Andersson, R. A. J. Janssen,
E. Wang, Energy Environ. Sci., 2017, 10.1039/C7EE01858D.
X. Long, Z. Ding, C. Dou, J. Zhang, J. Liu, L. Wang, Adv. Mater. 2016,
28, 6504-6508.
34
[a] Randomly substituted alkyl chains (2BO/2HD, 2:1).
exciton diffusion limits (5-20 nm);13 2HD-based active layers are
more finely mixed compared to 2BO/2HD-based films –in
agreement with the higher PL quenching efficiency observed for
2HD-based films (see SI, Figure S19). Correlating with the
distinct morphology patterns described in Figure 3, Figure 4 and
Table
2 provide the hole (µh) and electron (µe) mobility
characteristics and estimates determined by the space-charge-
limited current (SCLC) approach (see experimental details in SI).
In optimized 2BO/2HD active layers, µh and µe reach 4.1×10−4
cm2V−1s−1 and 2.9×10−5 cm2V−1s−1, respectively.
[6]
[7]
In summary, we have shown that the nonfullerene PIID[2F]T
polymer analogues (Eopt~1.9 eV) used with the polymer donor
PBFTAZ (model system; Eopt~1.6 eV) can achieve PCEs >7%
and some of the highest reported JSC and VOC values for all-
PSCs (>13 mA/cm2, 1.0 V). Given that, to date, most efficient
polymer acceptors are based on PDI or NDI motifs, branched
alkyl-substituted PIID[2F]T alternatives to PC61BM (or its C71
derivative) expand the class of efficient material systems for
further developments of the “all-polymer” BHJ solar cell
approach. The examination of other polymer donors will be of
importance in future work with the nonfullerene PIID[2F]T
polymer analogues.
a) W. Li, W. S. C. Roelofs, M. Turbiez, M. M. Wienk, R. A. J. Janssen,
Adv. Mater. 2014, 26, 3304-3309; b) C. R. McNeill, A. Abrusci, J.
Zaumseil, R. Wilson, M. J. McKiernan, J. H. Burroughes, J. J. M. Halls,
N. C. Greenham, R. H. Friend, Appl. Phys. Lett. 2007, 90, 193506; c) T.
W. Holcombe, C. H. Woo, Kavulak, B. C. Thompson, J. M. J. Fréchet, J.
Am. Chem. Soc. 2009, 131, 14160-14161.
[8]
[9]
E. Wang, W. Mammo, M. R. Andersson, Adv. Mater. 2014, 26, 1801-
1826.
a) R. Stalder, J. Mei, J. Subbiah, C. Grand, L. A. Estrada, F. So, J. R.
Reynolds, Macromolecules 2011, 44, 6303-6310; b) R. Zhao, C. Dou, Z.
Xie, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2016, 55, 5313-5317;
Angew. Chem. 2016, 128, 5399-5403; c) Z. Li, F. Xu, W. Zhang, Z.
Genene, W. Mammo, A. Yartsev, M. R. Andersson, R. A. J. Janssen, E.
Wang, J. Mater. Chem. A, 2017, 5, 11693-11700.
[10] a) S. Liu, Z. Kan, S. Thomas, F. Cruciani, J. L. Bredas, P. M. Beaujuge,
Angew. Chem. Int. Ed. 2016, 55, 12996-13000; Angew. Chem. 2016,
128, 13190–13194; b) S. Liu, X. Song, S. Thomas, Z. Kan, F. Cruciani,
F. Laquai, J. L. Bredas, P. M. Beaujuge, Adv. Energy Mater. 2017, 7,
1602574.
Acknowledgements
The authors acknowledge financial support under Baseline
Research Funding from King Abdullah University of Science and
Technology (KAUST), from ONR (Award N00014-17-1-2208 to
JLB), and from the Guangdong Natural Science Foundation (No.
2016A030310428 to S. Liu). The authors thank Xin Song for
some contributions in the early project developments. The
authors thank KAUST Analytical Core Labs for technical support.
[11] Z. Genene, J. Wang, X. Meng, W. Ma, X. Xu, R. Yang, W. Mammo, E.
Wang, Adv. Electron. Mater. 2016, 2, 1600084.
[12] a) M. J. Frisch, et al. Gaussian, Inc.: Wallingford, CT, USA, 2009; b) T.
Körzdörfer, J.-L. Brédas, Acc. Chem. Res. 2014, 47, 3284-3291.
[13] a) C. R. McNeill, Energy Environ. Sci. 2012, 5, 5667-5667; b) Y.
Firdaus, L. P. Maffei, F. Cruciani, M. A. Müller, S. Liu, S. Lopatin, N.
Wehbe, G. o. N. Ndjawa, A. Amassian, F. Laquai, P. M. Beaujuge, Adv.
Energy Mater. 2017, DOI: 10.1002/aenm.201700834. c) R.-Z. Liang, M.
Babics, A. Seitkhan, K. Wang, P. B. Geraghty, S. Lopatin, F. Cruciani,
Y. Firdaus, M. Caporuscio, D. J. Jones, P. M. Beaujuge, Adv. Funct
Mater. 2017 DOI: 10.1002/adfm.201705464.
Keywords: all-polymer solar cells • polymer acceptor • Isoindigo
• 3,4-Difluorothiophene
This article is protected by copyright. All rights reserved.