Chemistry - A European Journal
10.1002/chem.201901120
COMMUNICATION
pathway complexity in achieving novel microscale architectures
in the synthetic systems, and offer a photochemical method to
manipulate self-assembly pathways towards precisely controlled
synthesis of supramolecular assemblies.[39-42]
[17] M. F. J. Mabesoone, A. J. Markvoort, M. Banno, T. Yamaguchi, F.
Helmich, Y. Naito, E. Yashima, A. R. A. Palmans, E. W. Meijer, J. Am.
Chem. Soc. 2018, 140, 7810-7819.
[
18] S. Ogi, V. Stepanenko, J. Thein, F. Würthner, J. Am. Chem. Soc. 2016,
38, 670-678.
19] X. Ma, Y. Zhang, Y. Zhang, C. Peng, Y. Che, J. Zhao, Adv. Mater. 2015,
7, 7746-7751.
[20] S. Matsubara, H. Tamiaki, J. Am. Chem. Soc. 2019, 141, 1207-1211.
1
[
2
Acknowledgements
[
[
[
[
21] P. Xing, P. Li, H. Chen, A. Hao, Y. Zhao, Acs Nano 2017, 11, 4206-4216.
22] J. S. Valera, R. GoMez, L. Sanchez, Small 2018, 14, 1702437.
23] S. Ogi, C. Grzeszkiewicz, F. Würthner, Chem. Sci. 2018, 9, 2768-2773.
24] T. Fukui, S. Kawai, S. Fujinuma, Y. Matsushita, T. Yasuda, T. Sakurai,
S. Seki, M. Takeuchi, K. Sugiyasu, Nat. Chem. 2017, 9, 493-499.
This work was supported by the “National Key R&D Program of
China” (No. 2018YFA0209302), the National Natural Science
Foundation of China (Nos. 21577147, 21590811 and 21677148),
and the “Key Research Program of Frontier Sciences” (No.
QYZDY-SSW-SLH028) of the Chinese Academy of Sciences.
[25] S. Ogi, K. Sugiyasu, S. Manna, S. Samitsu, M. Takeuchi, Nat. Chem.
2014, 6, 188-195.
[
[
[
26] M. Endo, T. Fukui, S. H. Jung, S. Yagai, M. Takeuchi, K. Sugiyasu, J.
Am. Chem. Soc. 2016, 138, 14347-14353.
Keywords: Azobenzene • photoisomerization • Kinetic control •
27] X. Ma, Y. Zhang, Y. Zhang, Y. Liu, Y. Che, J. Zhao, Angew. Chem. Int.
Ed. 2016, 55, 9539-9543; Angew. Chem. 2016, 128, 9691-9695.
28] Y. Liu, C. Peng, W. Xiong, Y. Zhang, Y. Gong, Y. Che, J. Zhao, Angew.
Chem. Int. Ed. 2017, 56, 11380-11384; Angew. Chem. 2017, 129,
11538-11542.
Pathway Complexity • Chirality
[1]
[2]
[3]
A. M. Mulder, Science 2010, 330, 673-677.
E. T. Powers, D. L. Powers, Biophys. J. 2008, 94, 379-391.
J. M. A. Carnall, C. A. Waudby, A. M. Belenguer, M. C. A. Stuart, J. J.-P.
Peyralans, S. Otto, Science 2010, 327, 1502-1506.
[29] M. E. Robinson, A. Nazemi, D. J. Lunn, D. W. Hayward, C. E. Boott, M.
S. Hsiao, R. L. Harniman, S. A. Davis, G. R. Whittell, R. M. Richardson,
L. D. Cola, I. Manners, Acs Nano 2017, 11, 9162-9175.
[4]
D. V. D. Zwaag, P. A. Pieters, P. A. Korevaar, A. J. Markvoort, A. J. H.
Spiering, T. F. A. D. Greef, , E. W. Meijer, J. Am. Chem. Soc. 2015, 137,
[30] M. E. Robinson, D. J. Lunn, A. Nazemi, G. R. Whittell, L. D. Cola, I.
Manners, Chem. Comm. 2015, 51, 15921-15924.
12677-12688.
[5]
[6]
[7]
[8]
S. Ogi, T. Fukui, J. Melinda L, M. Takeuchi, K. Sugiyasu, Angew. Chem.
Int. Ed. 2014, 53, 14363-14367; Angew. Chem. 2014, 126, 14591-14595.
E. E. Greciano, B. Matarranz, n. L. Sanchez, Angew. Chem. Int. Ed. 2018,
[31] S. Ogi, K. Matsumoto, S. Yamaguchi, Angew. Chem. Int. Ed. 2018, 57,
2339-2343; Angew. Chem. 2018, 130, 2363-2367.
[32] S. Ogi, V. Stepanenko, K. Sugiyasu, M. Takeuchi, F. Würthner, J. Am.
Chem. Soc. 2015, 137, 3300-3307.
5
7, 4697-4701; Angew.Chem. 2018, 130, 4787-4791.
J. W. Sadownik, E. Mattia, P. Nowak, S. Otto, Nat. Chem. 2016, 8, 264-
69.
[33] J. Boekhoven, J. M. Poolman, C. Maity, F. Li, L. van der Mee, C. B.
Minkenberg, E. Mendes, J. H. van Esch, R. Eelkema, Nat. Chem. 2013,
5, 433-437.
2
P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders, P. A.
J. Hilbers, A. P. H. J. Schenning, T. F. A. D. Greef, E. W. Meijer, Nature
[34] C. E. Weston, R. D. Richardson, P. R. Haycock, A. J. P. White, M. J.
Fuchter, J. Am. Chem. Soc. 2014, 136, 11878-11881.
2012, 481, 492-496.
[
[
9]
A. T. Haedler, S. C. J. Meskers, R. H. Zha, M. Kivala, H. W. Schmidt, E.
[35] J. Calbo, C. E. Weston, A. J. P. White, H. S. Rzepa, J. Contreras-García,
M. J. Fuchter, J. Am. Chem. Soc. 2017, 139, 1261-1274.
[36] I. Danila, F. Riobe, F. Piron, J. Puigmarti-Luis, J. D. Wallis, M. Linares,
H. Agren, D. Beljonne, D. B. Amabilino, N. Avarvari, J. Am. Chem. Soc.
2011, 133, 8344-8353.
W. Meijer, J. Am. Chem. Soc. 2016, 138, 10539-10545.
10] F. Tantakitti, J. Boekhoven, X. Wang, R. V. Kazantsev, T. Yu, J. Li, E.
Zhuang, R. Zandi, J. H. Ortony, C. J. Newcomb, L. C. Palmer, G. S.
Shekhawat, M. O. de la Cruz, G. C. Schatz, S. I. Stupp, Nat. Mater. 2016,
1
5, 469-476.
[37] W. Zhang, W. Jin, T. Fukushima, N. Ishii, T. Aida, J. Am. Chem. Soc.
2013, 135, 114-117.
[
11] Y. Zhang, Y. Zheng, W. Xiong, C. Peng, Y. Zhang, R. Duan, Y. Che, J.
Zhao, Sci. Rep. 2016, 6, 27335.
[38] W. Zhang, W. Jin, T. Fukushima, T. Mori, T. Aida, J. Am. Chem. Soc.
2015, 137, 13792-13795.
[
12] P. A. Korevaar, C. J. Newcomb, E. W. Meijer, S. I. Stupp, J. Am. Chem.
Soc. 2014, 136, 8540-8543.
[39] I. Danila, F. Pop, C. Escudero, L. N. Feldborg, J. Puigmarti-Luis, F. Riobe,
N. Avarvari, D. B. Amabilino, Chem. Commun. 2012, 48, 4552-4554.
[40] F. Pop, C. Melan, I. Danila, M. Linares, D. Beljonne, D. B. Amabilino, N.
Avarvari, Chem. Eur. J. 2014, 20, 17443-17453.
[
13] A. Aliprandi, M. Mauro, L. D. Cola, Nat. Chem. 2016, 8, 10-15.
14] B. Kemper, L. Zengerling, D. Spitzer, R. Otter, T. Bauer, P. Besenius, J.
Am. Chem. Soc. 2018, 140, 534-537.
[
[
15] J. S. Valera, R. Gómez, L. Sanchez, Angew. Chem. Int. Ed. 2019, 58,
[41] L. Zhang, T. Wang, Z. Shen, M. Liu, Adv. Mater. 2016, 28, 1044-1059.
[42] J. Jiang, Y. Meng, L. Zhang, M. Liu, J. Am. Chem. Soc. 2016, 138,
15629-15635.
510-514; Angew.Chem. 2019, 131,520-524.
[16] Y. Wang, R. M. de Kruijff, M. Lovrak, X. Guo, R. Eelkema, J. H. van Esch,
Angew. Chem. Int. Ed. 2019, 58, 3800-3803; Angew. Chem. 2019, 131,
3840-3843.
This article is protected by copyright. All rights reserved.