8
of 9
MANE ET AL.
via a particular type of metal cluster during the reaction.
Although the nanoparticles may contribute significantly
to the activity, comparing the PXRD peaks (Figure 1) par-
ticularly after zero cycle, the cocktail of species such as
molecular complex and metal clusters may also be pre-
sent in the reaction mixture with the nanoparticles, as
ORCID
REFERENCES
[1] J. Tsuji, Palladium Reagents and Catalysts: New Perspectives for
the 21st Century, Wiley, New York 2004.
[5,44]
[2] C. C. J. Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus,
discussed by Ananikov and co-workers.
The transfor-
Angew. Chem. Int. Ed. 2012, 51, 5062.
mation of Pd complexes to PdNPs is a well-established
[3–5,42]
[3] J. Louie, J. F. Hartwig, Angew. Chem. Int. Ed. Engl. 1996, 35,
359.
phenomenon.
However, in the case of complexes
2
with strongly coordinated thiolate group, the formation
[
[
[
4] D. Astruc, Inorg. Chem. 2007, 46, 1884.
5] D. Eremin, V. P. Ananikov, Coord. Chem. Rev. 2017, 346, 2.
6] R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461.
of palladium sulfide, Pd S (x, y = rational number), was
x y
anticipated rather than Pd(0) species. In the case of
[18]
Suzuki
reactions catalyzed by Pd(II) complexes of
[7] A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 1998, 37, 3387.
[8] W. A. Herrmann, C. Brossmer, C-P. Reisinger,
T. H. Riermeier, K. Ofele, M. Beller, Chem. Eur. J. 1997, 3,
comparatively loosely bound thio/selenoether complexes
ꢀ
[45]
[18]
at ca 100 C, the formation of Pd E (E = S,
Se ) has
x
y
1
357.
9] C. J. Mathews, P. J. Smith, T. Welton, J. Mol. Catal. 2003,
06, 77.
been encountered.
[
2
[10] E. A. Kantchev, C. J. O'Brien, M. G. Organ, Angew. Chem. Int.
Ed. 2007, 46, 2768.
4
| CONCLUSIONS
[11] C. Rocaboy, J. A. Gladysz, Org. Lett. 2002, 4, 1993.
The Xantphos-capped Pd(II) complexes with dithiolate
ligands are very efficient in promoting the Heck reaction
of a wide range of aryl bromides. The catalysts remain
[12] D. E. Bergbreiter, P. L. Osburn, Y. S. Liu, J. Am. Chem. Soc.
999, 121, 9531.
13] D. Yuan, Q. Teng, H. V. Huynh, Organometallics 2014, 33,
794.
1
[
1
highly active at low concentration yielding high TON
[
[
14] C. Fliedel, P. Braunstein, Organometallics 2010, 29, 5614.
15] D. Zim, A. S. Gruber, G. Ebeling, J. Dupont, A. L. Monteiro,
Org. Lett. 2000, 2, 2881.
6
(
6 × 10 ). The present Pd dithiolate complexes with wide-
bite-angle diphosphines have a positive effect on the rate
of the catalytic reaction and showed improved activity
than our previously investigated dppe analogues. The cat-
alyst could be conveniently reused. The formation of
PdNPs has been confirmed using various techniques after
the catalysis reaction of the Pd(II) dithiolate complexes.
The high activity has been attributed to PdNPs, which
may serve as a reservoir of catalytically active species.
Supporting information: Details of general procedures
of the experiments, tables of data of reusability experi-
ment, comparison with other catalysts, ther-
mogravimetric curves of 1–3, PXRD pattern of 2 after
three cycles of catalysis reaction, EDAX spectrum and
histograms of size distribution of particle size of PdNPs,
[16] K. V. Vivekananda, S. Dey, A. Wadawale, N. Bhuvanesh,
V. K. Jain, Dalton Trans. 2013, 42, 14158.
[17] Q. Yao, E. P. Kinney, C. Zheng, Org. Lett. 2004, 6, 2997.
[
18] G. K. Rao, A. Kumar, J. Ahmed, A. K. Singh, Chem. Commun.
010, 46, 5954.
2
[19] R. Vanjari, T. Guntreddi, S. Kumar, K. N. Singh, Chem.
Commun. 2015, 51, 366.
[20] J. K. Dunleavy, Platinum Met. Rev. 2006, 50, 110.
[21] D. Yuan, H. V. Huynh, Organometallics 2010, 29, 6020.
[22] D. K. Paluru, S. Dey, A. Wadawale, V. K. Jain, J. Organometal.
Chem. 2013, 728, 52.
[23] D. K. Paluru, S. Dey, K. R. Chaudhari, M. V. Khedkar,
B. M. Bhanage, V. K. Jain, Tetrahedron Lett. 2014, 55, 2953.
[
[
[
24] H. Wang, R. Zhong, X. -Q. Guo, X. -Y. Feng, X. -F. Hou, Eur.
1
J. Inorg. Chem. 2010, 174.
25] A. Dervisi, D. Koursarou, L.-I. Ooi, P. N. Horton, M. B.
Hursthouse, Dalton Trans. 2006, 5717.
26] D. Samanta, S. Mukherjee, Y. P. Patil, P. S. Mukherjee, Chem.
Eur. J. 2012, 18, 12322.
H NMR spectra of all the coupling products (Figures S7–
13
1
S18), C{ H} NMR spectra of the coupling products (E)-
-acetylstilbene, (E)-4-stilbenecarboxylicacid methyl
ester, (E)-4-nitrostilbene, (E)-4-cyanostilbene and (E)-
-styrylthiophene (Figures S19–S23), elemental analysis
of (E)-4-acetylstilbene, (E)-4-stilbenecarboxylicacid
4
2
[27] S. Pradhan, R. P. John, RSC Adv. 2016, 6, 12453.
[28] C. -W. Zhao, J. -P. Ma, Q. -K. Liu, Y. Yu, P. Wang, Y. -A. Li,
K. Wang, Y. -B. Dong, Green Chem. 2013, 15, 3150.
methyl ester, (E)-4-nitrostilbene and (E)-4-styrylbenzal-
dehyde are provided in the supporting information.
[
[
29] C. Rohlich, K. Kohler, Adv. Synth. Catal. 2010, 352, 2263.
30] K. V. Vivekananda, S. Dey, D. K. Maity, N. Bhuvanesh,
V. K. Jain, Inorg. Chem. 2015, 54, 10153.
ACKNOWLEDGMENTS
[31] P. A. Mane, S. Dey, K. V. Vivekananda, Tetrahedron Lett. 2017,
P.A.M. is grateful to BARC-Mumbai University Collabo-
rative Scheme for providing a Senior Research Fellow-
ship (SRF). The authors thank Mr. Asheesh Kumar of
Chemistry Division for the EDAX measurements.
5
8, 25.
[32] P. A. Mane, S. Dey, A. K. Pathak, M. Kumar, N. Bhuvanesh,
Inorg. Chem. 2019, 58, 2965.