10.1002/ejoc.201901809
European Journal of Organic Chemistry
FULL PAPER
1H-NMR (500 MHz, CDCl3): = 7.79 (dd, J = 7.6, 2.6 Hz, 2H), 7.62 (dd, J
= 7.3, 2.6 Hz, 2H), 7.43 (t, J = 7.3 Hz, 2H), 7.36-7.19 (m, 12H), 5.06 (d, J
= 3.7 Hz, 1H), 5.01 (d, J = 11.0 Hz, 1H), 4.98 (d, J = 3.9 Hz, 1H), 4.74
(dd, J = 9.4, 8.1 Hz, 1H), 4.66 (d, J = 12.4 Hz, 1H), 4.63-4.56 (m, 3H),
4.48 (dd, J = 10.3, 6.2 Hz, 1H), 4.41 (dd, J = 11.3, 3.7 Hz, 1H), 4.35 (d, J
= 8.1 Hz, 1H), 4.29 (d, J = 12.1 Hz, 1H), 4.24 (t, J = 6.2 Hz, 1H), 4.16 (d,
J = 16.5 Hz, 1H), 4.11 (d, J = 16.5 Hz, 1H), 3.96 (t, J = 9.3 Hz, 1H), 3.88
(dd, J = 11.3, 6.6 Hz, 1H), 3.76-3.69 (m, 3H), 3.69 (s, 3H), 3.44-3.36 (m,
3H), 2.30 (s, 6H), 2.03 (s, 3H), 1.97 (s, 3H), 0.77 (s, 9H), 0.02 (s, 3H), -
0.06 (s, 3H). 13C-NMR (500MHz, CDCl3): = 175.49, 170.33, 169.95,
169.45, 154.12, 143.45, 143.40, 141.53, 141.38, 139.18, 137.90, 128.47,
127.93, 127.89, 127.85, 127.78, 127.34, 127.14, 127.12, 127.02, 124.82,
124.79, 120.07, 120.05, 100.08, 98.24, 77.90, 77.20, 76.61, 76.04, 73.22,
71.11, 70.91, 70.64, 69.45, 69.22, 67.39, 63.85, 61.46, 59.06, 51.84,
46.81, 26.72, 25.30, 20.62, 17.67, -4.93, -5.32. HRMS (ESI-LTQ-
Orbitrap) m/z [M+Na]+ calcd for C58H71NO18SiNa, 1120.4333, found
1120.4320.
[1]
a) R. Raman, K. Tharakaraman, V. Sasisekharan, R. Sasisekharan, Curr.
Opin. Struct. Biol. 2016, 40, 153-162; b) S. Ballal, S. R. Inamdar, Arch.
Microbiol. 2018, 200, 371-382; c) M. S. Macauley, P. R. Crocker, J. C.
Paulson, Nat. Rev. Immunol. 2014, 14, 653; d) Y.-Y. Zhao, M. Takahashi,
J.-G. Gu, E. Miyoshi, A. Matsumoto, S. Kitazume, N. Taniguchi, Cancer
Sci. 2008, 99, 1304-1310.
S. Kusumoto, K. Fukase, T. Shiba, Proc. Jpn. Acad. Ser. B. 2010, 86,
322-337.
a) A. Helenius, M. Aebi, Annu. Rev. Biochem 2004, 73, 1019-1049; b) T.
Kiuchi, M. Izumi, Y. Mukogawa, A. Shimada, R. Okamoto, A. Seko, M.
Sakono, Y. Takeda, Y. Ito, Y. Kajihara, J. Am. Chem. Soc. 2018, 140,
17499-17507.
M. Takeuchi, N. Inoue, T. W. Strickland, M. Kubota, M. Wada, R.
Shimizu, S. Hoshi, H. Kozutsumi, S. Takasaki, A. Kobata, Proc. Natl.
Acad. Sci. USA 1989, 86, 7819-7822.
a) T. Chitlaru, C. Kronman, M. Zeevi, M. Kan, A. Harel, A. Ordentlich,
B. Velan, A. Shafferman, Biochem. J 1998, 336, 647-658; b) K. Tanaka,
T. Masuyama, K. Hasegawa, T. Tahara, H. Mizuma, Y. Wada, Y.
Watanabe, K. Fukase, Angew. Chem. Int. Ed. 2008, 47, 102-105; c) K.
Tanaka, Org. Biomol. Chem. 2016, 14, 7610-7621.
a) X. Wang, J. Gu, E. Miyoshi, K. Honke, N. Taniguchi, Methods
Enzymol. 2006, 417, 11-22; b) C. Feng, N. M. Stamatos, A. I. Dragan, A.
Medvedev, M. Whitford, L. Zhang, C. Song, P. Rallabhandi, L. Cole, Q.
M. Nhu, S. N. Vogel, C. D. Geddes, A. S. Cross, PLOS ONE 2012, 7,
e32359.
[2]
[3]
[4]
[5]
[6]
Glycosylation between 21 and 7, Compound 23
To a suspension of donor 30, acceptor 21, N-iodosuccinimide (36.5 mg,
162.2 mol), and MS4A powder (ca. 100 mg) in CH2Cl2 (1.06 mL) was
added and trifluoromethanesulfonic acid (1.41 L, 16.0 mol) at -30 ºC
under Ar atmosphere. After being stirred at -30 ºC for 20 mins, the
reaction mixture was quenched with sat. NaHCO3 aq. and 10% Na2S2O3
aq. and extracted with CHCl3. The organic layer was dried over Na2SO4,
filtered, and concentrated in vacuo. The residue was purified by silica-gel
column chromatography (toluene/acetone = 5/1) to give 23 (57.2 mg,
83%) as a light yellow oil.
[7]
[8]
K. Landsteiner, Zentralbl. Bakteriol. 1900, 27, 357-362.
O. Amjadi, A. Rafiei, A. Ajami, R. Valadan, G. Janbaabaei, Res. Mol.
Med. 2015, 3, 1-9.
U. Galili, S. B. Shohet, E. Kobrin, C. L. Stults, B. A. Macher, J. Biol.
Chem. 1988, 263, 17755-17762.
U. Galili, E. A. Rachmilewitz, A. Peleg, I. Flechner, J. Exp. Med. 1984,
160, 1519-1531.
[9]
[10]
[11]
[12]
U. Galili, Immunol. Cell Biol. 2005, 83, 674-686.
a) T. Deguchi, M. Tanemura, E. Miyoshi, H. Nagano, T. Machida, Y.
Ohmura, S. Kobayashi, S. Marubashi, H. Eguchi, Y. Takeda, T. Ito, M.
Mori, Y. Doki, Y. Sawa, Cancer Res. 2010, 70, 5259-5269; b) D. C.
LaTemple, J. T. Abrams, S. Y. Zhang, U. Galili, Studies in Knockout
Mice for α1,3Galactosyltransferase 1999, 59, 3417-3423; c) T. Masahiro,
M. Eiji, N. Hiroaki, E. Hidetoshi, T. Kiyomi, K. Wataru, M. Masaki, D.
Yuichiro, Cancer Sci. 2013, 104, 282-290; d) G. R. Rossi, M. R. Mautino,
R. C. Unfer, T. M. Seregina, N. Vahanian, C. J. Link, Cancer Res. 2005,
65, 10555-10561; e) D. C. LaTemple, T. R. Henion, F. Anaraki, U. Galili,
Cancer Res. 1996, 56, 3069-3074; f) E. Iniguez, N. S. Schocker, K.
Subramaniam, S. Portillo, A. L. Montoya, W. S. Al-Salem, C. L. Torres,
F. Rodriguez, O. C. Moreira, A. Acosta-Serrano, K. Michael, I. C.
Almeida, R. A. Maldonado, PLoS Negl. Trop. Dis. 2017, 11, e0006039-
e0006039.
a) P. J. McEnaney, C. G. Parker, A. X. Zhang, D. A. Spiegel, ACS Chem.
Biol. 2012, 7, 1139-1151; b) C. B. Carlson, P. Mowery, R. M. Owen, E.
C. Dykhuizen, L. L. Kiessling, ACS Chem. Biol. 2007, 2, 119-127; c) J.
Li, S. Zacharek, X. Chen, J. Wang, W. Zhang, A. Janczuk, P. G. Wang,
Biorg. Med. Chem. 1999, 7, 1549-1558; d) O. R. M., C. C. B., X. Jinwang,
M. Patricia, F. Elisabetta, K. L. L., ChemBioChem 2007, 8, 68-82; e) K. P.
Naicker, H. Li, A. Heredia, H. Song, L.-X. Wang, Org. Biomol. Chem.
2004, 2, 660-664; f) M. F. Perdomo, M. Levi, M. Sällberg, A. Vahlne,
Proc. Natl. Acad. Sci. 2008, 105, 12515-12520; g) J. Sianturi, Y. Manabe,
H.-S. Li, L.-T. Chiu, T.-C. Chang, K. Tokunaga, K. Kabayama, M.
Tanemura, S. Takamatsu, E. Miyoshi, S.-C. Hung, K. Fukase, Angew.
Chem. Int. Ed. 2019, 131, 4574-4578; h) J. Sianturi, Y. Manabe, H.-S. Li,
L.-T. Chiu, T.-C. Chang, K. Tokunaga, K. Kabayama, M. Tanemura, S.
Takamatsu, E. Miyoshi, S.-C. Hung, K. Fukase, Angew. Chem. Int. Ed.
2019, 58, 4526-4530.
1H-NMR (500 MHz, CDCl3) : = 7.42-7.19 (m, 25H), 5.46 (d, J = 3.9 Hz,
1H), 5.04 (d, J = 10.6 Hz, 1H), 5.01-4.97 (m, 3H), 4.94 (d, J = 3.7 Hz, 1H),
4.74-4.68 (m,4H), 4.64 (d, J = 12.0 Hz, 1H), 4.53 (dt, J = 10.6, 5.0 Hz,
2H), 4.42-4.35 (m, 3H), 4.26 (d, J = 7.9 Hz, 1H), 4.18 (d, J = 16.5 Hz, 1H),
4.14-4.06 (m, 3H), 3.99-3.93 (m, 2H), 3.89-3.78 (m, 5H), 3.66 (s, 3H),
3.53 (dd, J = 9.3, 3.4 Hz, 1H), 3.43 (dd, J = 10.8, 1.5 Hz, 1H), 3.35 (t, J =
6.6 Hz, 1H), 2.29 (s, 6H), 2.00 (s, 3H), 1.92 (s, 3H), 1.28 (d, J = 6.6 Hz,
3H), 0.79 (s, 9H), 0.06 (s, 3H), 0.01 (s, 3H). 13C-NMR (500 MHz, CDCl3):
= 175.49, 170.41, 170.16, 169.66, 139.02, 138.97, 138.80, 138.65,
137.90, 128.59, 128.36, 128.22, 128.14, 127.99, 127.97, 127.92, 127.79,
127.68, 127.57, 127.50, 127.31, 127.19, 127.15, 100.52, 98.74, 97.43,
79.99, 77.51, 76.27, 76.04, 75.91, 74.97, 74.26, 73.74, 73.52, 73.42,
73.32, 71.73, 71.27, 70.59, 70.33, 67.77, 66.53, 64.49, 61.95, 59.15,
51.81, 26.66, 25.75, 20.69, 20.65, 17.57, 16.70, -4.07, -4.57. HRMS
(ESI-LTQ-Orbitrap) m/z [M+Na]+ calcd for C70H89NO20SiNa 1314.5639,
found 1314.5661.
[13]
The synthetic procedures and characterization of the all compounds
studied herein can be found in the Supporting Information.
[14]
[15]
a) S. Kusumoto, H. Yoshimura, M. Imoto, T. Shimamoto, T. Shiba,
Tetrahedron Lett. 1985, 26, 909-912; b) M. Imoto, H. Yoshimura, T.
Shimamoto, N. Sakaguchi, S. Kusumoto, T. Shiba, Bull. Chem. Soc. Jpn.
1987, 60, 2205-2214.
a) P. Boullanger, J. Banoub, G. Descotes, Can. J. Chem. 1987, 65, 1343-
1348; b) P. Boullanger, M. Jouineau, B. Bouammali, D. Lafont, G.
Descotes, Carbohydr. Res. 1990, 202, 151-164.
a) M. L. Wolfrom, H. B. Bhat, J. Org. Chem. 1967, 32, 1821-1823; b) G.
Blatter, J.-M. Beau, J.-C. Jacquinet, Carbohydr. Res. 1994, 260, 189-202.
W. M. zu Reckendorf, N. Wassiliadou-Micheli, Chem. Ber. 1970, 103,
1792-1796.
R. U. Lemieux, T. Takeda, B. Y. Chung, in Synthetic Methods for
Carbohydrates, American Chemical Society, 1977, vol. 39, pp 90-115.
R. U. Lemieux, R. M. Ratcliffe, Can. J. Chem. 1979, 57, 1244-1251.
a) A. V. Demchenko, G.-J. Boons, Tetrahedron Lett. 1998, 39, 3065-
3068; b) D. Crich, V. Dudkin, J. Am. Chem. Soc. 2001, 123, 6819-6825;
c) L. O. Kononov, N. N. Malysheva, E. G. Kononova, A. V. Orlova, Eur.
Acknowledgments
This work was financially supported in part by JSPS KAKENHI
Grant Number 15H05836 in Middle Molecular Strategy, JSPS
KAKENHI Grant Number 16H01885, JSPS KAKENHI Grant
Number 16H05924, JSPS KAKENHI Grant Number 17K19201,
JSPS A3 Foresight Program.
[16]
[17]
[18]
[19]
[20]
Keywords: glycosylation • protecting group • hydrogen bond •
glycan antigen • microflow
This article is protected by copyright. All rights reserved.