Jean-Marc Garnier et al.
COMMUNICATIONS
see: S. E. Denmark, G. L. Beunter. Angew. Chem.
2008, 120, 2–82; Angew. Chem. Int. Ed. 2008, 47, 2–81.
[3] For a recent review on the MBH in general, see: a) D.
Basavaiah, A. J. Rao, T. Satyanarayana, Chem. Rev.
2003, 103, 811–891. For a recent review on the
azaMBH, see: b) Y.-L. Shi, M. Shi, Eur. J. Org. Chem.
2007, 18, 2905–2916.
[8] a) S. Mayer, B. List, Angew. Chem. 2006, 118, 4299–
4301; Angew. Chem. Int. Ed. 2006, 45, 4193–4196. For
a recent highlight on counterion catalysis, see: b) J.
Lacour, D. Linder, Science 2007, 317, 462–463.
[9] For recent reviews: a) M. S. Taylor, E. N. Jacobsen,
Angew. Chem. 2006, 118, 1550–1573; Angew. Chem.
Int. Ed. 2006, 45, 1520–1543; b) A. G. Doyle, E. N. Ja-
cobsen, Chem. Rev. 2007, 107, 5713–5743.
[10] For the first biomimetic trifunctional organocatalyst,
see: a) T. Ema, D. Tanida, T. Matsukawa, T. Sakai,
Chem. Commun. 2008, 957–958. For a recent example
of acid activated, enantioselective trifuntional organo-
catalyst for a Michael addition, see b) D.-Q. Xu, L.-P.
Wang, S.-P. Luo, Y.-F. Wang, S. Zhang, Z.-Y. Xu, Eur. J.
Org. Chem. 2008, 12, 1049–1053.
[11] For representative examples of asymmetric ammonium
salt catalysis, see: epoxidation-a) M. F. A. Adamo, V. K.
Aggarwal, J. Am. Chem. Soc. 2000, 122, 8317–8318;
b) V. K. Aggarwal, C. Lopin, F. Sandrinelli, J. Am.
Chem. Soc. 2003, 125, 7596–7601; c) X. Wang, B. List,
Angew. Chem. 2008, 120, 1135–1138; Angew. Chem.
Int. Ed. 2008, 47, 1119–1122. Michael addition: d) Y.
Xiong, Y. Wen, F. Wang, B. Gao, X. Liu, X. Huang, X.
Feng, Adv. Synth. Catal. 2007, 349, 2156–2166. Aldol
reactions: e) S. Luo, H. Xu, L. Zhang, J. Li, J.-P. Cheng,
Org Lett. 2008, 10, 653–656. For a recent review on
protonated chiral catalysts, see: f) C. Bolm, T. Ranta-
nen, I. Schiffers, L. Zani, Angew. Chem. 2005, 117,
1788–1793; Angew. Chem. Int. Ed. 2005, 44, 1758–
1763.
[4] For initial mechanistic work: a) J. S. Hill, N. S. Issacs, J.
Phys. Org. Chem. 1990, 3, 285–288. For recent mecha-
nistic investigation, see: b) L. S. Santos, C. H. Pavam,
W. P. Almeida, F. Coelho, M. N. Eberlin, Angew. Chem.
2004, 116, 4430–4433; Angew. Chem. Int. Ed. 2004, 43,
4330–4333; c) K. E. Price, S. J. Broadwater, H. M.
Jung, D. T McQuade, Org. Lett. 2005, 7, 147–150;
d) K. E. Price, S. J. Broadwater, D. T. McQuade, J. Org.
Chem. 2005, 70, 3980–3987; e) P. Buskens, J. Klanker-
mayer, W. Leitner, J. Am. Chem. Soc. 2005, 127,
16762–16763; f) V. K. Aggarwal, S. Y. Fulford, G. C.
Lloyd-Jones, Angew. Chem. 2005, 117, 1734–1736;
Angew. Chem. Int. Ed. 2005, 44, 1706–1708; g) I. T.
Raheem, E. N. Jacobsen, Adv. Synth. Catal. 2005, 347,
1701–1708; h) R. Robiette, V. K. Aggarwal, J. N.
Harvey, J. Am. Chem. Soc. 2007, 129, 15513–15525.
[5] For a review on enantioselective MBH reactions, see:
G. Masson, C. Housseman, J. Zhu, Angew. Chem. 2007,
119, 4698–4712; Angew. Chem. Int. Ed. 2007, 46, 4614–
4628.
[6] Representative BINAP phosphine-based bifunctional
organocatalysis of the azaMBH: a) M. Shi, L.-H. Chen,
Chem. Commun. 2003, 1310–1311; b) M. Shi, G.-L.
Zhao, Adv. Synth. Catal. 2004, 346, 1205–1219; c) M.
Shi, L.-H. Chen, J. Am. Chem. Soc. 2005, 127, 3790–
3800; d) K. Matsui, S. Takizawa, H. Sasai, J. Am.
Chem. Soc. 2005, 127, 3680–3681; e) M. Shi, C.-Q. Li,
Tetrahedron: Asymmetry 2005, 16, 1385–1391; f) M.
Shi, L.-H. Chen, W-D. Teng, Adv. Synth. Catal. 2005,
347, 1781–1789; g) M. Shi, L.-H. Chen, Pure Appl.
Chem. 2005, 77, 2105–2110; h) K. Matsui, K. Tanaka,
A. Horri, S. Takizawa, H. Sasai. Tetrahedron: Asym-
metry 2006, 17, 578–583; i) K. Matsui, S. Takizawa, H.
Sasai, Synlett 2006, 5, 761–765; j) Y-H. Liu, L.-H.
Chen, M. Shi, Adv. Synth. Catal. 2006, 348, 973–979;
k) K. Ito, K. Nishida, T. Gotanda, Tetrahedron Lett.
2007, 48, 6147–6149; l) Y-L. Shi, M. Shi, Adv. Synth.
Catal. 2007, 349, 2129–2135; m) M. Shi, G.-N. Ma, J.
Gao, J. Org. Chem. 2007, 72, 9779–9781; n) M.-J. Qi, T.
Ai, M. Shi, G. Li, Tetrahedron 2008, 64, 1181–1186;
o) Y-H. Liu, M. Shi, Adv. Synth. Catal. 2008, 350, 122–
128; p) X.-Y. Guan, Y.-Q. Jiang, M. Shi, Eur. J. Org.
Chem. 2008, 12, 2150–2155.
[12] For a recent review on organic ammonium salt and ion
hydrogen bonding, see: K. Sada, T. Tani, S. Shinkai,
Synlett 2006, 15, 2364–2374.
[13] a) P. Kocovsky, S. Vyskocil, M, Smrcina, Chem. Rev.
2003, 103, 3213–3245; b) S. Vyskocil, M. Smrcina, V.
Hanus, M. Polasek, P. Kocovsky, J. Org. Chem. 1998,
63, 7738–7748; c) M. Smrcina, M. Lorenc, V. Hanus, P.
Sedmera, P. Kocovsky, J. Org. Chem. 1992, 57, 1917–
1920.
[14] For catalyst 1a, the yields of product 3a in one and two
hours were 65% and 90%, respectively.
[15] 20–50 mol% benzoic acid additive could result in yield
reduction to as low as 11%. See ref.[6l]
[16] Reaction times for electron rich imine substrates under
comparable conditions can be as long as 3 days, see
ref.[6l]
[17] Polymeric triarylphosphines can catalyze generic MBH
reactions in moderate to good yield in 3–5 days at
room or elevated temperatures; see: C. Kwong, R.
Huang, M. Zhang, M. Shi, P. H. Toy, Chem. Eur. J.
2007, 13, 2369–2376.
[7] Phosphine-based trifunctional co-catalysis of the
azaMBH: a) S. Luo, X. Mi, L. Zhang, S. Liu, H. Xu, J-
P. Cheng, Angew. Chem. 2006, 118, 3165–3169; Angew.
Chem. Int. Ed. 2006, 45, 3093–3097; b) R. Gausepohl,
P. Buskens, J. Kleinen, A. Bruckmann, C. W. Lehmann,
J. Klankermayer, W. Leitner, Angew. Chem. 2006, 118,
3772–3775; Angew. Chem. Int. Ed. 2006, 45, 3689–
3692.
[18] It has just been reported that a partially racimized
chiral alkylACTHNUGTRNEUNG(diaryl)phosphine-based on the BINAP scaf-
fold can lead to completion of azaMBH reactions in 1
to 5 h between electron-rich and -deficient imines and
MVK; see: Z. Lei, G. Ma, M. Shi, Eur. J. Org. Chem.
2008, 22, 3817–3820.
338
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2009, 351, 331 – 338