M. G. Teixeira and E. S. Alvarenga
[
[
13] P. Merino, E. Marqués-López, T. Tejero, R. P. Herrera. Synthesis 2010, 1,
geometry was submitted to a molecular mechanics current-energy
calculation to determine the force field best parameterized for the
conformer. Each of these conformers was then submitted to geom-
etry optimization and frequency calculation using DFT at M06-2X/6-
1–26. doi:10.1055/s-0029-1217130.
14] A. M. Sarotti. Org. Biomol. Chem. 2014, 12, 187–199. doi:10.1039/
c3ob41628c.
[15] M. Watanabe, M. Tsukazaki, Y. Hamada, M. Iwao, S. Furukana. Chem.
Pharm. Bull. 1989, 37, 2948–2951. doi:10.1248/cpb.37.2948.
[
80]
31+G(d,p) level of theory.
Chemical shifts were obtained from
[
16] V. Branchadell, J. Font, A. Oliva, J. Ortí, R. M. Ortuo. Tetrahedron 1991,
47, 8775–8786. doi:10.1016/S0040-4020(01)96199-X.
the NMR shielding tensor values, which were computed for each
[
81]
conformer at B3LYP/6-311+G(2d,p) level in Gaussian 09.
The
[
17] Z. Chen, R. M. Ortuno. Tetrahedron Asymm. 1994, 5, 371–376.
doi:10.1016/S0957-4166(00)86208-4.
conformers were subjected to Boltzmann weighting and then con-
verted to empirically scaled chemical shift values for each nucleus
of the candidate structure. Regression analysis parameters by
[18] A. Benmeddah, S. M. Mekelleche, W. Benchouk, B. Mostefa-Kara,
D. Villemin. J. Mol. Struc.- THEOCHEM 2007, 821, 42–46. DOI: 10.1016/j.
theochem.2007.06.018
[
82]
1
13
Lodewyk were used to scale and reference H and C chemical
shifts. These operations were repeated for each of all diastereoiso-
mers. The NMR and free-energy data were assembled by using
[
19] F. Fringuelli, A. Taticchi, The Diels-Alder Reaction: Selected Practical
Methods, John Wiley & Sons, New York, 2002.
20] I. Fleming, Pericyclic Reactions, Oxford University Press Inc., New York,
1999.
[
[
83]
the python script created by Willoughby. The experimental data
set were compared with the calculated data and mean absolute er-
ror values were determined.
[21] A. E. Taggi, J. Meinwald, F. C. Schroeder. J. Am. Chem. Soc. 2004, 126,
0364–10369. doi:10.1021/ja047416n.
1
[
22] J. K. Nicholson, J. Connelly, J. C. Lindon, E. Holmes. Nat. Rev. Drug
Discovery 2002, 1, 153–161. doi:10.1038/nrd728.
23] E. M. Lenz, I. D. Wilson. J. Proteome Res. 2007, 6, 443–458. doi:10.1021/
pr0605217.
A goodness-of-fit probability was determined using the DP4
[
84]
method described by Goodman. Specifically, a conformational
search was performed using the Monte Carlo Multiple Minimum
method and the Merck Molecular Force Field. The searches were
done in the gas phase with the number of steps large enough to
find all low-energy conformers at least ten times. The resulting con-
formers were subjected to DFT calculations of single-point energy
and gauge-including atomic orbitals shielding tensors at the
B3LYP/6-31G(d,p) level in the gas phase. The shielding tensors were
converted into referenced chemical shifts by subtracting the com-
[
[24] K. C. Nicolaou, S. A. Snyder. Angew. Chem. Int. Ed. 2005, 44, 1012–1044.
doi:10.1002/anie.200460864.
25] T. Helgaker, M. Jaszunski, K. Ruud. Chem. Rev. 1999, 99, 293–352.
doi:10.1021/cr960017t.
26] G. Bifulco, P. Dambruoso, L. Gomez-Paloma, R. Riccio. Chem. Rev. 2007,
107, 3744–3779. doi:10.1021/cr030733c.
[
[
[27] P. Tahtinen, A. Bagno, K. D. Klika, K. Pihlaja. J. Am. Chem. Soc. 2003, 125,
609–4618. doi:10.1021/ja021237t.
[28] G. Barone, L. Gomez-Paloma, D. Duca, A. Silvestri, R. Riccio, G. Bifulco.
4
[
84]
puted shielding tensors of tetramethylsilane.
The resulting
Chem. Eur. J. 2002, 8, 3233–3239. DOI: 0947-6539/02/0814-3233
chemical shift values have been Boltzmann averaged using the
single-point energy obtained from the calculation. The temperature
used was 298 K. DP4 analysis was accomplished by inputting com-
[
[
[
[
[
[
[
[
[
[
[
29] G. Barone, D. Duca, A. Silvestri, L. Gomez-Paloma, R. Riccio, G. Bifulco.
Chem. Eur. J. 2002, 8, 3240–3245. DOI: 0947-6539/02/0814-3240
30] B. Wang, A. T. Dossey, S. S. Walse, A. S. Edison, K. M. J. Merz. J. Nat. Prod.
2
009, 72, 709–713. doi:10.1021/np8005056.
31] C. K. Tai, P. L. Yeh, Y. S. Wu, T. L. Shih, B. C. Wang. J. Mol. Struc. 2014,
068, 84–93. doi:10.1016/j.molstruc.2014.03.070.
1
32] Z. Li, J. Zhang, Y. Li, H. Gao. J. Mol. Struc. 2013, 1035, 69–75. doi:10.1016/
j.molstruc.2012.09.030.
33] L. Zhang, S. Q. Wang, X. J. Li, A. L. Zhang, Q. Zhang, J. M. Gao. J. Mol.
Struc. 2012, 1016, 72–75. doi:10.1016/j.molstruc.2012.02.041.
34] S. G. Smith, J. M. Goodman. J. Org. Chem. 2009, 74, 4597–4607.
doi:10.1021/jo900408d.
35] A. M. Sarotti, S. C. Pellegrinet. J. Org. Chem. 2009, 74, 7254–7260.
doi:10.1021/jo901234h.
36] K. Wolinski, J. F. Hinton, P. Pulay. J. Am. Chem. Soc. 1990, 112,
Acknowledgements
We are grateful to FAPEMIG, CNPq, and CAPES for financial support.
We would like to thank Professor JB from Université Laval for the
helpful suggestions. We are grateful to Flavio and Vinicius from
DTI for technical assistance.
8
251–8260. doi:10.1021/ja00179a005.
37] J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch. J. Chem. Phys.
996, 104, 5497–5509. doi:10.1063/1.471789.
38] A. G. Griesbeck, D. Blunk, T. T. El-Idreesy, A. Raabe. Angew. Chem. Int. Ed.
007, 46, 8883–8886. doi:10.1002/anie.200701397.
39] S. M. Koskowich, W. C. Johnson, R. S. Paley, P. R. Rablen. J. Org. Chem.
008, 73, 3492–3496. doi:10.1021/jo702722g.
References
1
[
[
[
[
[
[
[
1] M. Miyazawa, T. Tsukamoto, J. Anzai, Y. Ishikawa. J. Agric. Food Chem.
004, 52, 4401–4405. doi:10.1021/jf0497049.
2] T. Tsukamoto, Y. Ishikawa, M. Miyazawa. J. Agric. Food Chem. 2005, 53,
549–5553. doi:10.1021/jf050110v.
3] R. A. Momin, M. G. J. Nair. J. Agric. Food Chem. 2001, 49, 142–145.
doi:10.1021/jf001052a.
4] J. H. Kwon, Y. J. Ahn. Pest Manag. Sci. 2003, 59, 119–123. doi:10.1002/
ps.607.
5] S. S. K. Chan, T. Y. Cheng, G. Lin. J. Ethnopharmacol. 2007, 111, 677–680.
doi:10.1016/j.jep.2006.12.018.
2
2
5
2
[
[
40] D. K. Nielsen, L. L. Nielsen, S. B. Jones, L. Toll, M. C. Asplund, S. L. Castle.
J. Org. Chem. 2009, 74, 1187–1199. doi:10.1021/jo802370v.
41] J. M. Gao, J. C. Qin, G. Pescitelli, S. D. Pietro, Y. T. Ma, A. L. Zhang. Org.
Biomol. Chem. 2010, 8, 3543–3551. doi:10.1039/c002773a.
[
42] D. C. Braddock, H. S. Rzepa. J. Nat. Prod. 2008, 71, 728–730. doi:10.1021/
np0705918.
6] J. Du, Y. Yu, Y. Ke, C. Wang, L. Zhu, Z. M. Qian. J. Ethnopharmacol. 2007,
[
43] C. Bassarello, G. Bifulco, P. Montoro, A. Skhirtladze, E. Kemertelidze,
C. Pizza, S. Piacente. Tetrahedron 2007, 63, 148–154. doi:10.1016/j.
tet.2006.10.034.
112, 211–214. doi:10.1016/j.jep.2007.02.007.
7] M. Shao, K. Qu, K. Liu, Y. Zhang, L. Zhang, Z. Lian, T. Chen, J. Liu, A. Wu,
Y. Tang, H. Zhu. Planta Med. 2011, 77, 809–816. doi:10.1055/s-0030-
[
44] W. Migda, B. Rys. Magn. Reson. Chem. 2004, 42, 459–466. doi:10.1002/
mrc.1366.
1
250573.
8] J. Huang, X. Q. Lu, C. Zhang, J. Lu, G. Y. Li, R. C. Lin, J. H. Wang. Fitoterapia
013, 91, 21–27. doi:10.1016/j.fitote.2013.08.013.
9] Q. Wei, J. Yang, J. Ren, A. Wang, T. Ji, Y. Su. Fitoterapia 2014, 93,
26–232. doi:10.1016/j.fitote.2014.01.010.
[
[
[
45] G. Saielli, K. C. Nicolaou, A. Ortiz, H. Zhang, A. Bagno. J. Am. Chem. Soc.
2
2
011, 133, 6072–6977. doi:10.1021/ja201108a.
[
[
46] P. Jeschke. Pest Manag. Sci. 2010, 66, 10–27. doi:10.1002/ps.1829.
47] E. S. Alvarenga, M. G. Teixeira, M. F. Pimentel, M. C. Picanço. BR Patent
2
[
[
[
10] K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis. Angew.
Chem. Int. Ed. 2002, 41, 1668–1698. DOI: 1433-7851/02/4110-1669
11] E. J. Corey. Angew. Chem. Int. Ed. 2002, 41, 1650–1667. DOI: 1433-7851/
2
014, 10 2014, 031753.
[
48] F. Fringuelli, A. Taticchi, The Diels-Alder Reaction: Selected Practical
Methods, Wiley, Chichester, 2002.
02/4110-1651
12] K. Takao, R. Munakata, K. Tadano. Chem. Rev. 2005, 105, 4779–4807.
[49] A. Arrieta, F. P. Cossío. J. Org. Chem. 2001, 66, 6178–6180. doi:10.1021/
doi:10.1021/cr040632u.
jo0158478.
wileyonlinelibrary.com/journal/mrc
Copyright © 2016 John Wiley & Sons, Ltd.
Magn. Reson. Chem. (2016)