C O M M U N I C A T I O N S
in methanol was also accompanied by etherification of the hydroxy
group (3, Scheme 1).
subsequent SN2 substitution of a protonated hydroxy group. We
believe that the formation of 11a in benzene also proceeds via a
Friedel-Crafts-type reaction of the cation 16 with the solvent.
Acyclic ketenimmonium cation 15A formed by the protonation
of 12 should exist predominantly in the less hindered conformation
15A1, which cannot cyclize but rather adds alcohol to give 18. The
unstable imide enol ether 18 is hydrolyzed upon workup to imide
13. Traces of the cyclization product 14 are, apparently, produced
Cycloaromatization of 1a was ca. two times slower in 2-propanol-
d1 and in methanol-d1. The substantial solvent isotope in normal
direction (kH/kD ≈ 2) indicates that proton transfer is at least partially
rate-determining. Incorporation of deuterium into the reaction
product (2a-d2, Scheme 4) provides further evidence against
diradical mechanism since p-benzene should preferentially abstract
protium from the methine group of the solvent.
from the minor conformer 15A2
.
In conclusion, the replacement of a propargylic carbon in 3,4-
benzocyclodeca-1,5-diyne with a nitrogen atom resulted in dramatic
enhancement of the enediyne reactivity. The cycloaromatization
reaction of aza-enediynes 1a,b proceeds by a new polar mechanism
via the intermediate formation of ketenimmonium cation. The latter
undergoes rapid cyclization to give phenyl cation, which is trapped
by a solvent.
Scheme 4
Acknowledgment. Authors thank the NSF (Grant CHE-
0449478) and Georgia Cancer Coalition for the support of this
project.
In contrast to 1a, only traces of the O-H insertion product 14
were detected in the thermolysis of acyclic enediyne-sulfonamide
12 in 2-propanol, while imide 13 was isolated in 72% yield (Scheme
5).10 The acyclic compound is less reactive and requires 4 h heating
at 160 °C in 2-propanol to achieve full conversion. The product of
conventional Bergman reaction, 2-(N-propyl-N-tosyl)-3-propyl-
naphthalene, has not been detected in reaction mixtures.
Supporting Information Available: Experimental procedures, and
compound characterization data. This material is available free of charge
References
(1) Bergman, R. G. Acc. Chem. Res., 1973, 6, 25.
Scheme 5
(2) For recent reviews see: (a) Galm, U.; Hager, M. H.; Lanen, S. G. V.; Ju,
J.; Thorson, J. S.; Shen, B. Chem. ReV. 2005, 105, 739. (b) Shen, B.;
Nonaka, K. Curr. Med. Chem. 2003, 10, 2317. (c) Enediyne Antibiotics
as Antitumor Agents; Borders, D. B., Doyle, T. W., Eds.; Marcel Dekker:
New York, 1995. (d) Jones, G. B.; Fouad, F. S. Curr. Pharm. Design,
2002, 8, 2415.
(3) (a) Rawat, D. S.; Zaleski, J. M. Synlett 2004, 393. (b) Nicolaou, K. C.;
Zuccarello, G.; Riemer, C.; Estevez, V. A.; Dai, W. M. J. Am. Chem.
Soc. 1992, 114, 7360. (c) Maier, M. E. Synlett 1995, 13. (d) Schreiner, P.
R. J. Am. Chem. Soc. 1998, 120, 4184. (e) Gaffney, S. M.; Capitani, J.
F.; Castaldo, L.; Mitra, A. Int.J. Quant. Chem. 2003, 95, 706. (f) Banfi,
L.; Guanti, G.; Rasparini, M. Eur.J. Org. Chem. 2003, 1319.
(4) (a) Klein, M.; Walenzyk, T.; Konig, B. Collect. Czech. Chem. Commun.
2004, 69, 945. (b) Plourde, G. W., II.; Warner, P. M.; Parrish, D. A.;
Jones. J. Org. Chem. 2002, 67, 5369. (c) Jones, G. B.; Warner, P. M. J.
Am. Chem. Soc. 2001, 123, 2134. (d) Jones, G. B.; Plourde, G. W. Org.
Lett. 2000, 2, 1757. (e) Kim, C. S.; Russell, K. C. J. Org. Chem. 1998,
63, 8229.
(5) (a) Schmittel, M.; Kiau, S. Chem. Lett. 1995, 953. (b) Semmelhack, M.
F.; Neu, T.; Foubelo, F. J. Org. Chem. 1994, 59, 5038. (c) Roy, S. K.;
Basak, A. Chem. Commun. 2006, 1648. (d) Basak, A.; Mandal, S.; Kumar,
D. A.; Bertolasi, V. Bioorg. Med. Chem. Lett. 2002, 12, 873. (e) Basak,
A.; Shain, J. C.; Khamrai, U. K.; Rudra, K. R.; Basak, A. J. Chem. Soc.,
Perkin Trans. 1, 2000, 1955.
The fact that cycloaromatization of aza-enediynes 1a,b and 12
is accompanied by O-H insertion in hydroxylic solvents and not
hydrogen abstraction suggests that this reaction proceeds by the
polar rather than diradical pathway. Experimental observation
described above can be accommodated by the following reaction
mechanism (Scheme 6).
Scheme 6
(6) (a) Feng, L.; Zhang, A.; Kerwin, S. M. Org. Lett. 2006, 8, 1983. (b) Hoffer,
J.; Schottelius, M. J.; Feichhtinger, D.; Chen, P. J. Am. Chem. Soc. 1998,
120, 376. (c) Kraka, E.; Cremer, D. J. Am. Chem. Soc. 2000, 122, 8245.
(d) Cramer, C. J. J. Am. Chem. Soc. 1998, 120, 6261.
(7) (a) Alabugin, I. V.; Manoharan, M. J. Phys. Chem. A 2003, 107, 3363.
(b) Schreiner, P. R.; Navarro-Vasquez, A.; Prall, M. Acc. Chem. Res. 2005,
38, 29. (c) Zeidan, T. A.; Kovalenko, S. V.; Manoharan, M.; Alabugin, I.
V. J. Org. Chem. 2006, 71, 962. (d) Stahl, F.; Moran, D.; Schleyer, P.;
Prall, M.; Schreiner, P. R. J. Org. Chem. 2002, 67, 1453. (e) Koga, N.;
Morokuma, K. J. Am. Chem. Soc. 1991, 113, 1907.
(8) (a) Bhattacharyya, S.; Clark, A. E.; Pink, M.; Zaleski, J. M. Chem.
Commun. 2003, 1156. (b) Konig, B.; Pitsch, W.; Klein, M.; Vasold, R.;
Prall, M.; Schreiner, P. R. J. Org. Chem. 2001, 66, 1742. (c) Prall, M.;
Wittkopp, A.; Fokin, A. A.; Schreiner, P. R. J. Comput. Chem. 2001, 22,
1605.
(9) Klein, M.; Ko¨nig, B. Tetrahedron 2004, 60, 1087.
(10) Supporting Information.
Acid catalysis of cycloaromatization reaction, as well as pro-
nounced solvent isotope and deuterium incorporation, provides
strong support for the rate-determining protonation of the nucleo-
philic yneamine carbon of 1a. Resulting ketenimmonium cation
15 undergoes very facile, as evident by the absence of addition
products, nucleophilic attack by the second acetylenic moiety to
give phenyl cation 16, which is in turn trapped by the solvent
yielding intermediate 17. The latter can be deprotonated to 2a or,
in the case of small nucleophiles such as methanol, suffer
(11) Zhang, X.; Zhang, Y.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.;
Petersen, M. E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. J. Org. Chem.
2006, 71, 4170.
(12) Takai, K.; Kuroda, T.; Nakatsukasa, S.; Oshima, K.; Nozaki, H.
Tetrahedron Lett. 1985, 26, 5585.
(13) Boger, D. L.; Zhou, J. J. Org. Chem. 1993, 58, 3018.
(14) (a) Myers, A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc. 1992,
114, 9369. (b) Dopico, P. G.; Finn, M. G. Tetrahedron, 1999, 55, 29.
(15) Perrin, C. L.; Rodgers, B. L.; O’Connor, J. M. J. Am. Chem. Soc. 2007,
129, 4795.
JA073614D
9
J. AM. CHEM. SOC. VOL. 129, NO. 40, 2007 12063