bearing oxygenation as found in various medicinal agents
and natural products. Expanding upon these observations
and focusing on the iridoid family of natural products, we
envisaged the rearrangement of cyclic R,ꢀ-unsaturated esters
Studies commenced with the preparation of hindered tert-
butyl ester 2a, a substrate chosen to minimize the possibility
of NHC-catalyzed transesterification. Two syntheses of 2a
were investigated; the first involved the RCM of a citronellal
9
4b
(
3
i.e., 2) as a method to access bicyclic dihydropyranones (i.e.,
derivative to deliver the aldehydic variant of 8, which was
1
0,11
16
).
Herein, we report the outcome of such studies for
then oxidized to the acid. This strategy gave the required
the preparation of cyclopenta[c]pyran 3, a molecule repre-
senting the core of the iridoid family. Subsequent elaboration
to (-)-7-deoxyloganin (1), a natural product prepared by total
material. However, for the scalable synthesis of 2a, it was
more practical to start with tetrahydrofuran 7 and use an
intercepted Horner-Wadsworth-Emmons reaction to deliver
12
17
synthesis once previously, has also been achieved (Scheme
).
allylic alcohol 6 (Scheme 2). Conversion to ester 8 followed
1
Scheme 2. Preparation of R,ꢀ-Unsaturated Enol Ester 2a
Scheme 1. Synthetic Strategy to (-)-7-Deoxyloganin (1)
by hydrolysis then provided acid 9, which was converted to
acid chloride 4.
The central challenge to our synthesis of (-)-7-deoxylo-
ganin (1) involved the NHC-catalyzed rearrangement of diene
1
3
Esterification of acid chloride 4, using tert-butyl formyl
2
, in the presence of a spectating ester group. In addition
18
acetate (5) in the presence of pyridine, gave an inseparable
mixture of the desired ester 2a, along with the Knoevenagel
adduct 10. Fortunately, by using H u¨ nig’s base, the formation
of 10 was eliminated.
to chemoselectivity, this reaction must proceed with substrate-
directed stereoselectivity. Finally, elaboration of dihydro-
pyranone 3 to (-)-7-deoxyloganin (1) requires a chemo- and
stereoselective reduction and a challenging ꢀ-glycosyla-
1
4,15
Initial attempts to rearrange enol ester 2a to dihydro-
pyranone 3a using the NHC derived from diaryl imida-
zolium A met with limited success (Table 1, entries 1 and
tion.
(
9) For medicinally relevant pyran natural products, see: Prisinzano, T. E.
J. Nat. Prod. 2009, 72, 581.
10) For other NHC-catalyzed approaches to pyranones, see: (a) He,
2
). In related studies, we have found the highly reactive
(
tetramethyl carbene B1 to be useful with unreactive
substrates. In this case, using carbene B1 at -78 °C in
THF gave the desired dihydropyranone 3a, along with
isomeric 3a′, the former being favored (Table 1, entry 3).
Moving to the diisopropyl dimethyl carbene B2 and
decreasing catalyst loading improved the yield and dias-
tereoselectivity (Table 1, entry 4). Conducting the reaction
in toluene increased the diastereoselectivity further but
decreased the yield (Table 1, entry 5).
M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418. (b) He,
M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 15088. (c) He,
M. H.; Beahm, B. J.; Bode, J. W. Org. Lett. 2008, 10, 3817. (d) Wang, L.;
Thai, K.; Gravel, M. Org. Lett. 2009, 11, 891. (e) Li, G.-Q.; Dai, L.-X.;
You, S.-L. Org. Lett. 2009, 11, 1623
11) For selected transition-metal-based approaches to pyranones, see:
a) Itoh, K.; Hasegawa, M.; Tanaka, J.; Kanemasa, S. Org. Lett. 2005, 7,
.
(
(
9
79. (b) Evans, D. A.; Thomson, R. J.; Francisco, F. J. Am. Chem. Soc.
005, 127, 10816. For organocatalytic approaches not using NHCs, see:
2
(
c) Tozawa, T.; Nagao, H.; Yamane, Y.; Mukaiyama, T. Chem. Asian J.
007, 2, 123. (d) Calter, M. A.; Wang, J. Org. Lett. 2009, 11, 2205
12) Tietze, L. F.; Denzer, H.; Holdgr u¨ n, X.; Neumann, M. Angew.
Chem., Int. Ed. Engl. 1987, 12, 1295.
13) For applications of NHCs in transesterification catalysis, see: (a)
2
.
(
(
Grasa, G. A.; Singh, R.; Nolan, S. P. Synthesis 2004, 971. (b) Grasa, G. A.;
Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583. (c) Nyce, G. W.;
Lamboy, J. A.; Connor, E. F.; Waymouth, R. M.; Hedrick, J. L. Org. Lett.
(14) In B u¨ chi’s seminal contributions, glycosylation was achieved in
very low yield: B u¨ chi, G.; Carlson, J. A.; Powell, J. E., Jr.; Tietze, L. F.
J. Am. Chem. Soc. 1973, 95, 540, and references cited therein.
(15) For glycosylation with TMSOTf, see: (a) Tietze, L.-F.; Fischer, R.
Tetrahedron Lett. 1981, 22, 3239. (b) Tietze, L.-F.; Fischer, R. Angew.
Chem., Int. Ed. 1983, 22, 888, and references cited therein.
(16) Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37,
2091.
2
002, 4, 3587. (d) Nyce, G. W.; Glauser, T.; Connor, E. F.; M o¨ ck, A.;
Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2003, 125, 3046. (e)
Suzuki, Y.; Yamauchi, K.; Muramatsu, K.; Sato, M. Chem. Commun. 2004,
2
770. (f) Kano, T.; Sasaki, K.; Maruoka, K. Org. Lett. 2005, 7, 1347. NHC-
catalyzed transesterification with amino alcohols and mechanistic comments:
g) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453. (h) Schmidt,
(
(17) (a) Graff, M.; Al Dilaimi, A.; Seguineau, P.; Rambaud, M.; Villi e´ ras,
J. Tetrahedron Lett. 1986, 27, 1577. (b) Villi e´ ras, J.; Rambaud, M.; Graff,
M. Synth. Commun. 1986, 16, 149.
M. A.; M u¨ ller, P.; Movassaghi, M. Tetrahedron Lett. 2008, 49, 4316. For
a detailed mechanistic investigation, see: (i) Pignataro, L.; Papalia, T.;
Slawin, A. M. Z.; Goldup, S. M. Org. Lett. 2009, 11, 1643. For
computational studies, see: (j) Lai, C.-H.; Lee, H. M.; Hu, C.-H. Tetrahedron
Lett. 2005, 46, 6265.
(18) (a) Bihmayer, G. A.; Derkosch, D. J.; Polansky, O. E. Monatsh.
Chem. 1967, 98, 564. (b) Sato, M.; Yoneda, N.; Katagiri, N.; Watanabe,
H.; Kaneko, C. Synthesis 1986, 672.
Org. Lett., Vol. 12, No. 21, 2010
4837