We now propose that strategic placement of very bulky
groups7 on the BODIPY core structure should hinder π-π
stacking8 of the chromophore, which is likely to be respon-
sible for the quenching of the emission in the solid state for
most aromatic fluorophores; tert-butyl groups are very bulky,
and especially when introduced as a 3,5-di-tert-butylphenyl
substituent, they are very effective in keeping fluorophore
π-systems apart.
With these considerations, we synthesized compounds 1
and 2 (Figure 1). The reactions of appropriate aryl aldehydes
and the corresponding pyrroles following usual BODIPY
synthesis procedures yielded the dyes 1 and 2 in satisfactory
yields. Absorbance and emission spectra in organic solvents
were acquired. Both dyes have high quantum yields in
organic solvents (ΦF ) 0.83 and 0.91 respectively, in
chloroform).
Figure 1. Structure of compounds 1 and 2.
with nearly orthogonal (dihedral angles of 79.6° and 84.3°
for 1 and 2, respectively) 8-phenyl substituents (Figure 2).
Suitable crystals for single-crystal X-ray diffraction were
obtained by the slow evaporation of CHCl3 solutions at
ambient temperature. Crystal structures were as expected,
(2) (a) Tang, C. W.; VansSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(b) Tang, C. W.; VansSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65,
3610. (c) Schi, J.; Tang, C. W. Appl. Phys. Lett. 1997, 70, 1665. (d) Kraft,
A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. 1998, 110, 416; Angew.
Chem., Int. Ed. 1998, 37, 402. (e) Mitschke, U.; Ba¨uerle, P. J. Mater. Chem.
2000, 10, 1471. (f) Wong, K.-C.; Chien, Y.-Y.; Chen, R.-T.; Wang, C.-F.;
Liu, Y.-T.; Chiang, H.-H.; Hsieh, P.-Y.; Wu, C.-C.; Chou, C. H.; Su, Y. O.;
Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2002, 124, 11576. (g) Tonzola,
C. J.; Alam, M. M.; Kaminsky, W. K.; Jenekhe, S. A. J. Am. Chem. Soc.
2003, 125, 13548. (h) Yeh, H.-C.; Chan, L.-H.; Wu, W.-C.; Chen, C.-T. J.
Mater. Chem. 2004, 14, 1293. (i) Chen, C.-T. Chem. Mater. 2004, 16, 4389.
(j) Mizobe, Y.; Tohnai, N.; Miyata, M.; Hasegawa, Y. Chem. Commun.
2005, 1839. (k) Berner, D.; Klein, C.; Nazeeruddin, M. D.; de Angelis, F.;
Castellani, M.; Bugnon, P.; Scopelliti, R.; Zuppiroli, L.; Graetzel, M. J.
Mater. Chem. 2006, 16, 4468. (l) Ooyama, Y.; Mamura, T.; Yoshida, K.
Terahedron Lett. 2007, 48, 5791. (m) Ooyama, Y.; Hayashi, A.; Okamoto,
T.; Egawa, H.; Mamura, T.; Yoshida, K. Eur. J. Org. Chem. 2008, 3085.
(3) (a) Ooyama, Y.; Okamoto, T.; Yamaguchi, T.; Suzuki, T.; Hayashi,
A.; Yoshida, K. Chem.sEur. J. 2006, 12, 7827. (b) Ooyama, Y.; Kagawa,
Y.; Harima, Y. Eur. J. Org. Chem. 2007, 3613.
(4) Langhals, H.; Krotz, O.; Polborn, K.; Mayer, P. Angew. Chem., Int.
Ed. 2005, 44, 2427.
(5) Zhang, D.; Wen, Y.; Xiao, Y.; Yu, G.; Liu, Y.; Qian, X. Chem.
Commun. 2008, 4777.
(6) (a) Loudet, A.; Burgess, K. Chem. ReV. 2007, 107, 489. (b) Ziessel,
R.; Ulrich, G.; Harriman, A. New J. Chem. 2007, 31, 496. (c) Ulrich, G.;
Ziessel, R.; Harriman, A. Angew. Chem., Int. Ed. 2008, 47, 1854. (d) Qi,
X.; Jun, E. J.; Xu, L.; Kim, S.-J.; Hong, J. S. J.; Yoon, Y. J.; Yoon, J. J.
Org. Chem. 2006, 71, 2881. (e) Atilgan, S.; Ekmekci, Z.; Dogan, A. L.;
Guc, D.; Akkaya, E. U. Chem. Commun. 2006, 4398. (f) Ela-Erten, S.;
Yilmaz, M. D.; Icli, B.; Dede, Y.; Icli, S.; Akkaya, E. U. Org. Lett. 2008,
10, 3299. (g) Ozlem, S.; Akkaya, E. U. J. Am. Chem. Soc. 2009, 131, 48.
(7) (a) Ooyama, Y.; Ishii, A.; Kagawa, Y.; Imae, I.; Harima, Y. New
J. Chem. 2007, 31, 2076. (b) Davis, R.; Abraham, S.; Rath, N. P.; Das, S.
New J. Chem. 2004, 28, 1368. (c) Horiguchi, E.; Matsumoto, S.; Funabiki,
K.; Matsui, M. Bull. Chem. Soc. Jpn. 2005, 78, 1167. (d) Chiang, C.-L.;
Wu, M.-F.; Dai, D.-C.; Wen, Y.-S.; Wang, J.-K.; Chen, C.-T. AdV. Funct.
Mater. 2005, 15, 231. (e) Ooyama, Y.; Nakamura, T.; Yoshida, K. New
J. Chem. 2005, 29, 447. (f) Ooyama, Y.; Yoshikawa, S.; Watanabe, S.;
Yoshida, K. Org. Biomol. Chem. 2007, 5, 1260.
Figure 2. ORTEP drawings of compounds 1 (top) and 2 (bottom).
With a careful study of the unit cell, an interesting observa-
tion was made: the distance between the closest overlapping
near-parallel π-surfaces (defined as the boradiazaindacene
framework, planes A in neighboring unit cells in Figures 3
and 4) in compound 1 was considerably larger (14.3 Å) than
the similar distance (10.1 Å) in 2. Both of them in turn are
much larger compared to a reference BODIPY dye with no
meso substituent and available crystallographic structure.9
For that compound (see the Supporting Information), the
comparable distance is just 3.51 Å. Between other planes
(A-C) the overlap is only partial. This clearly indicates that
(8) (a) de Halleux, V.; Calbert, J.-P.; Brocorens, P.; Cornil, J.; Declercq,
J.-P.; Bre´das, J.-L.; Geerts, Y. AdV. Funct. Mater. 2004, 14, 649. (b) Yeh,
H.-C.; Wu, W.-C.; Wen, Y.-S.; Dai, D.-C.; Wang, J.-K.; Chen, C.-T. J.
Org. Chem. 2004, 69, 6455. (c) Mizukami, S.; Houjou, H.; Sugaya, K.;
Koyama, E.; Tokuhisa, H.; Sasaki, T.; Kanesato, M. Chem. Mater. 2005,
17, 50. (d) Yoshida, K.; Yamazaki, J.; Tagashira, Y.; Watanabe, S. Chem.
Lett. 1996, 9. (e) Yoshida, K.; Tachikawa, T.; Yamasaki, J.; Watanabe, S.;
Tokita, S. Chem. Lett. 1996, 1027. (f) Yoshida, K.; Miyazaki, H.; Miura,
Y.; Ooyama, Y.; Watanabe, S. Chem. Lett. 1999, 837. (j) Yoshida, K.;
Ooyama, Y.; Tanikawa, S.; Watanabe, S. Chem. Lett. 2000, 714. (k)
Yoshida, K.; Ooyama, Y.; Tanikawa, S.; Watanabe, S. J. Chem. Soc., Perkin
Trans. 2 2002, 708. (l) Ooyama, Y.; Yoshida, K. New J. Chem. 2005, 29,
1204. (m) Langhals, H.; Potrawa, T.; No¨th, H.; Linti, G. Angew. Chem.
1989, 101, 497.
(9) (a) Bandichhor, R.; Thivierge, C.; Bhuvanesh, N. S. P.; Burgess, K.
Acta. Crystallogr., Sect. E 2006, 62, 4310. (b) Wang, D. C.; Wang, H. P.;
Gao, S.; Zhang, T. Y.; Peng, X. J. Acta. Crystallogr., Sect. E 2007, 63,
2238.
2106
Org. Lett., Vol. 11, No. 10, 2009