The NRSCC and the Spanish Ministerio de Ciencia e Inno-
vacio´n and FECYT are acknowledged for financial support, Dr H.
Peters for mass spectroscopy analyses, E. Jellema for GPC analysis
and J. Iglesias-Sigu¨enza and J. M. Lassaletta for preliminary
catalytic studies on 1,3-dipolar cycloaddition reactions.
Notes and references
‡ Crystal data for 2: C18H19AgClN3, M = 420.68, triclinic, space group
◦
¯
˚
˚
˚
P1, a = 8.7708(2) A, b = 9.4691(2) A, c = 11.1568(3) A, a = 86.174(2) ,
◦
◦
3
˚
b = 78.509(2) , g = 66.335(2) , V = 831.57(4) A , Z = 2, T = 150 K,
Dc = 1.680 g cm-3, m(Mo-Ka) = 13.75 cm-1, Mo-Ka radiation (l =
˚
0.71073 A), F(000) = 424.0, R1 = 0.0153, wR2 = 0.0393. Crystal data
for 4: C19H19AgF3N3O3S, M = 534.30, monoclinic, space group C2/c, a =
Scheme 3 Synthesis of assemblies 5A and 5B.
◦
˚
˚
˚
19.9067(13) A, b = 13.9335(7) A, c = 15.7007(5) A, b = 103.914(4) , V =
3
-3
-1
˚
4227.1(4) A , Z = 8, T = 110 K, Dc = 1.679 g cm , m(Mo-Ka) = 11.04 cm ,
˚
Mo-Ka radiation (l = 0.71073 A), F(000) = 2144, R1 = 0.0272, wR2 =
The molecule can be considered as a dimer connected by weak
0.0626. Crystal data for 5A: 2(C62H47AgClN7Zn) + C7H8, M = 2289.65,
˚
˚
˚
monoclinic, space group P21/c, a = 10.8301(4) A, b = 21.1321(7) A, c =
Ag ◊ ◊ ◊ Cl interactions (3.041 A) between heterometallic monomers
◦
3
˚
˚
24.3335(10) A, b = 101.511(2) , V = 5457.0(4) A , Z = 2, T = 110 K, Dc =
(Fig. 3(b)), where the C(1)–Ag–Cl(1) angle (166.46(9)◦) is slightly
-3
-1
˚
1.393 g cm , m(Mo-Ka) = 8.96 cm , Mo-Ka radiation (l = 0.71073 A),
deviated from linearity. The pyridine coordinates to the Zn atom
F(000) = 2348, R1 = 0.0403, wR2 = 0.0954.
˚
(Zn1–N3 2.182(2) A) almost perpendicularly to the porphyrin
¨
1 K. Olefe, J. Organomet. Chem., 1968, 12, P42.
plane (Npor–Zn1–N3: in the range 89–104◦). Notably, the NHC
transoid conformation maximizes the distance between Zn(II) and
Ag(I) ions. To the best of our knowledge, this is the first X-ray
structure of a supramolecular assembly of this type involving NHC
ligands reported to date.
2 H.-W. Wanzlick and H.-J. Scho¨nherr, Angew. Chem., Int. Ed. Engl.,
1968, 7, 141.
3 For reviews: (a) F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed.,
2008, 47, 3122; (b) N-Heterocyclic Carbenes in Synthesis. ed. S. P. Nolan,
Wiley-VCH, Weinheim, 2006; (c) W. A. Herrmann, Angew. Chem., Int.
Ed., 2002, 41, 1290.
4 A. J. Arduengo, III, R. L. Harlow and M. Kline, J. Am. Chem. Soc.,
1991, 113, 361.
5 (a) S. J. Connon and S. Blechert, Angew. Chem., Int. Ed., 2003, 42, 1900;
(b) H. Clavier, K. Grela, A. Kirschning, M. Mauduit and S. P. Nolan,
Angew. Chem., Int. Ed., 2007, 46, 6786.
The assembly formation was further investigated by NMR
and UV/vis.19 As previously described with analogous pyridine–
Zn(II) assemblies,27 the complex induced shift of the ortho-pyridyl
1
protons, observed in the H-NMR spectrum, is much higher in
5A (Dd = 5.0 ppm) than in 5B (Dd = 0.2 ppm). Apart from
this, UV/vis titration experiments showed binding constants of
Kass = 3.0 ¥ 103 M-1 for 5A; and Kass = 6.5 ¥ 105 M-1 for 5B.
The magnitudes of the binding are similar to that reported on
phosphine-assemblies23a,c and Rh–NHC complexes.14
Finally, it is worth mentioning that the dissolution of 5B in
a 5 : 1 mixture of dichloromethane–THF displayed a decrease
of about two orders of magnitude in the binding constant
(Kass = 7.4 ¥ 103 M-1). Furthermore, 2 completely precipitated
out when 5B was stirred in pure THF for few minutes. From
the above mentioned experiments, it appears that addition of
polar coordinating solvents weakens the Zn ◊ ◊ ◊ N interactions and,
finally, excess of coordinating solvents replaces Zn ◊ ◊ ◊ N bond,
reforming the Ag ◊ ◊ ◊ N interaction, which leads to the precipitation
of the insoluble polymer 2.
In summary, we report a novel interesting building block to
construct supramolecular architectures, based on non-chelating
heterotopic NHC-pyridyl ligand. This ligand forms unique coor-
dination polymers in combination with silver, providing materials
with alternating metals arrays; Ag+–Ag-. The addition of Zn(II)–
TPP to these complexes leads to pyridyl–zinc coordination, and as
a consequence to well-defined soluble supramolecular assemblies.
Changing the solvent makes this equilibrium reversible, facilitating
the controlled interconversion between the various structures.
Future studies include the application of these principles in
material science and catalysis. Preliminary results show that the
silver carbene complexes are active in several reactions, such as the
copper-catalyzed Michael addition of ZnEt2 to enones28 or the 1,3-
dipolar cycloaddition to imines for the synthesis of polysubstituted
prolines.29
6 E. A. B. Kantchev, C. J. O’Brien and M. G. Organ, Angew. Chem., Int.
Ed., 2007, 46, 2768.
7 (a) J.-M. Lehn, Supramolecular Chemistry, VCH-Publishers, New York,
1995; (b) J.-M. Lehn, J. L. Atwood, J. E. D. Davies, D. D. Macnicol and
F. Vo¨gtle, Comprehensive Supramolecular Chemistry, Vol. 9, Pergamon,
Oxford, 1996.
8 See for example: (a) Z. Wang, G. Chen and K. Ding, Chem. Rev., 2009,
109, 322; (b) A. K. Cheetham, C. N. R. Rao and R. K. Feller, Chem.
Commun., 2006, 4780; and references herein.
9 A. J. Boydston, K. A. Williams and C. W. Bielawski, J. Am. Chem. Soc.,
2005, 127, 12496.
10 (a) J. C. Garrison and W. J. Youngs, Chem. Rev., 2005, 105, 3978; (b) X.
Zhang, Y. Qiu, B. Rao and M. Luo, Organometallics, 2009, 28, 3093.
11 Y.-B. Dong, G.-X. Jin, M. D. Smith, R.-Q. Huang, B. Tang and H.-C.
zur Loye, Inorg. Chem., 2002, 41, 4909.
12 For example: X. Zhang, B. Liu, A. Liu, W. Xie and W. Chen,
Organometallics, 2009, 28, 1336.
13 A. A. D. Tulloch, A. A. Danopoulos, S. Winston, S. Kleinhenz and G.
Eastham, J. Chem. Soc., Dalton Trans., 2000, 4499.
14 M. Rubio, E. Jellema, M. A. Siegler, A. L. Spek, J. N. H. Reeka and B.
de Bruin, Dalton Trans., 2009, 8970.
15 H. M. J. Wang and I. J. B. Lin, Organometallics, 1998, 17, 972.
16 A. N. Khlobystov, A. J. Blake, N. R. Champness, D. A. Lemenovskii,
A. G. Majouga, N. V. Zyk and M. Schro¨der, Coord. Chem. Rev., 2001,
222, 155.
˚
17 The Ag1–Ag2 distance of 3.097 A is considerably lower than the sum
˚
of the van der Waals radii (3.44 A).
18 For other perspectives of 4: see ESI†.
19 See ESI†.
20 H. P. Stephenson, J. Chem. Phys., 1954, 22, 1077.
21 For reviews on this subject see: (a) M. J. Wilkinson, P. W. N. M. van
Leeuwen and J. N. H. Reek, Org. Biomol. Chem., 2005, 3, 2371; (b) B.
Breit, Angew. Chem., Int. Ed., 2005, 44, 6816; (c) A. J. Sandee and
J. N. H. Reek, Dalton Trans., 2006, 3385.
22 Supramolecular ligands: (a) V. F. Slagt, P. W. N. M. van Leeuwen and
J. N. H. Reek, Chem. Commun., 2003, 2474; (b) V. F. Slagt, P. W. N. M.
van Leeuwen and J. N. H. Reek, Angew. Chem., Int. Ed., 2003, 42, 5619;
(c) V. F. Slagt, M. Ro¨der, P. C. J. Kamer, P. W. N. M. van Leeuwen and
5434 | Dalton Trans., 2010, 39, 5432–5435
This journal is
The Royal Society of Chemistry 2010
©