Organic Letters
Letter
Chem. Commun. 2001, 209. (c) Flanagan, S. R.; Harrowven, D. C.;
Bradley, M. Tetrahedron Lett. 2003, 44, 1795. (d) Beemelmanns, C.;
Reissig, H.-U. Angew. Chem., Int. Ed. 2010, 49, 8021. (e) Nicolaou, K.
C.; Dalby, S. M.; Majumder, U. J. Am. Chem. Soc. 2008, 130, 14942.
For radical-mediated oxidative dearomatization of indoles without the
possibility of rearomatization: (f) Zuo, Z.; Ma, D. Angew. Chem., Int.
Ed. 2011, 50, 12008. (g) Zi, W.; Zuo, Z.; Ma, D. Acc. Chem. Res. 2015,
48, 702. (h) El Kaïm, L.; Grimaud, L.; Le Goff, X.-F.; Menes-Arzate,
M.; Miranda, L. D. Chem. Commun. 2011, 47, 8145. (i) Yin, H.; Wang,
T.; Jiao, N. Org. Lett. 2014, 16, 2302.
(10) Seminal contribution: (a) Minisci, F.; Bernardi, R.; Bertini, F.;
Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575. For a general
review: (b) Duncton, M. A. J. MedChemComm 2011, 2, 1135. For
selected recent examples: (c) DiRocco, D. A.; Dykstra, K.; Krska, S.;
Vachal, P.; Conway, D. V.; Tudge, M. Angew. Chem., Int. Ed. 2014, 53,
4802. (d) Seiple, I. B.; Su, S.; Rodriguez, R. A.; Gianatassio, R.;
Fujiwara, Y.; Sobel, A. L.; Baran, P. S. J. Am. Chem. Soc. 2010, 132,
13194. (e) Ma, X.; Herzon, S. B. J. Am. Chem. Soc. 2016, 138, 8718.
(f) Klauck, F. J. R.; James, M. J.; Glorius, F. Angew. Chem., Int. Ed.
2017, 56, 12336. (g) Lo, J. C.; Kim, D.; Pan, C.-M.; Edwards, J. T.;
Galstyan, A.; Strassert, C. A.; Studer, A. Chem. Commun. 2016, 52,
5997.
(17) CCDC 1575354−1575356 (3a, 3b, 3r) contain the
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic Data
1
(18) Only one diastereoisomer was detected by H NMR of the
crude mixture after aqueous workup for all compounds. The trans
stereochemistry may be controlled by electronic factors during the
attack of the nucleophile on the carbocation at C3.
(19) The low yield could be attributed to the low solubility of both
the starting indole 1p and the spiroindoline product 3p.
(20) Dimers such as 5 (Scheme 3) were obtained as the main
byproducts and resulted from the oxidation of indoles 1 with CAN.
This result can be explained by the low solubility of the sodium 1,1-
difluoroethyl sulfinate.
(21) Moreover, upon addition of TEMPO as a radical scavenger to
the reaction, no spiroindoline 3b was observed. Instead 59% of 1b was
recovered along with an undefined dimer of 1b.
(22) The redox potential of CAN is 1.61 V vs NHE; for a review on
CAN as a single-electron oxidant: Nair, V.; Deepthi, A. Chem. Rev.
2007, 107, 1862.
Yabe, Y.; Gui, J.; Qin, T.; Gutier
́
rez, S.; Giacoboni, J.; Smith, M. W.;
Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.
(23) The oxidation potential of CF3SO2K is 1.05 V vs SCE; see:
Tommasino, J.-B.; Brondex, A.; Medebielle, M.; Thomalla, M.;
́
Langlois, B. R.; Billard, T. Synlett 2002, 1697.
́
́
(h) Gutierrez-Bonet, A.; Remeur, C.; Matsui, J. K.; Molander, G. A. J.
Am. Chem. Soc. 2017, 139, 12251. (i) Matsui, J. K.; Primer, D. N.;
Molander, G. A. Chem. Sci. 2017, 8, 3512.
(24) The oxidation potential of 3-methyl-N-acetylindole has been
(11) For a review on direct trifluoromethylation of C−H bonds:
(a) Liu, H.; Gu, Z.; Jiang, X. Adv. Synth. Catal. 2013, 355, 617. For
selected examples of radical mediated trifluoromethylation of C−H
bonds of arenes: (b) Wiehn, M. S.; Vinogradova, E. V.; Togni, A. J.
Fluorine Chem. 2010, 131, 951. (c) Kino, T.; Nagase, Y.; Ohtsuka, Y.;
Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine
Chem. 2010, 131, 98. (d) Nagib, D. A.; MacMillan, D. W. C. Nature
2011, 480, 224. (e) Mejía, E.; Togni, A. ACS Catal. 2012, 2, 521.
(12) (a) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron Lett.
1991, 32, 7525. (b) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.;
Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci.
U. S. A. 2011, 108, 14411. (c) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R.
A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.;
Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494. (d) Fujiwara, Y.; Dixon,
J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter,
determined to be 1.10 V vs Ag/AgCl; see ref 14b.
(25) The redox potentials of the sulfinate reagent and indoles
substituted by electron-withdrawing groups at the nitrogen are close.
Moreover, the presence of electron-donating groups on the indole
nucleus may lower the oxidation potential of the indole since 3-
methyl-5-methoxyl-N-acetylindole has an oxidation potential of 0.98 vs
Ag/AgCl; see ref 14b.
(26) Radical cations generated from indoles substituted at the
nitrogen by electron-withdrawing groups could be persistent and lead
to selective coupling reaction with a transient radical; see ref 14b for a
discussion.
́
R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S.
Nature 2012, 492, 95. (e) Zhou, Q.; Ruffoni, A.; Gianatassio, R.;
Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S. Angew. Chem., Int. Ed.
2013, 52, 3949. (f) Gianatassio, R.; Kawamura, S.; Eprile, C. L.; Foo,
K.; Ge, J.; Burns, A. C.; Collins, M. R.; Baran, P. S. Angew. Chem., Int.
Ed. 2014, 53, 9851. (g) Li, L.; Mu, X.; Liu, W.; Wang, Y.; Mi, Z.; Li,
C.-J. J. Am. Chem. Soc. 2016, 138, 5809.
(13) (a) Ziegler, F. E.; Belema, M. J. Org. Chem. 1994, 59 (26), 7962.
(b) Benkovics, T.; Guzei, I. A.; Yoon, T. P. Angew. Chem., Int. Ed.
2010, 49, 9153. (c) Li, J.; Liu, M.; Li, Q.; Tian, H.; Shi, Y. Org. Biomol.
Chem. 2014, 12, 9769.
(14) (a) Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G.
Angew. Chem., Int. Ed. 2014, 53, 11881. For an electrochemical
version, see: (b) Liu, K.; Tang, S.; Huang, P.; Lei, A. Nat. Commun.
2017, 8, 775.
(15) (a) Zhang, C. Adv. Synth. Catal. 2014, 356, 2895. (b) Lefebvre,
Q. Synlett 2016, 28, 19.
(16) For the synthesis of C2-fluorinated indolines by other strategies:
(a) García Ruano, J. L.; Aleman
Monteagudo, S.; Parra, A.; del Pozo, C.; Fustero, S. Angew. Chem.,
Int. Ed. 2008, 47, 7941. (b) Fustero, S.; Sanchez-Rosello, M.; Baez, C.;
del Pozo, C.; del Ruano, J. L. G.; Aleman, J.; Marzo, L.; Parra, A.
́ ́
, J.; Catalan, S.; Marcos, V.;
́
́
́
́
Amino Acids 2011, 41, 559. (c) Yin, X.-P.; Zeng, X.-P.; Liu, Y.-L.; Liao,
F.-M.; Yu, J.-S.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53,
13740. (d) Doebelin, C.; Patouret, R.; Garcia-Ordonez, R. D.; Chang,
M. R.; Dharmarajan, V.; Kuruvilla, D. S.; Novick, S. J.; Lin, L.;
Cameron, M. D.; Griffin, P. R.; Kamenecka, T. M. ChemMedChem
2016, 11, 2607. (e) Leifert, D.; Artiukhin, D. G.; Neugebauer, J.;
D
Org. Lett. XXXX, XXX, XXX−XXX