G Model
CCLET 3476 1–4
4
W.-Y. Wang et al. / Chinese Chemical Letters xxx (2015) xxx–xxx
Table 3
Appendix A. Supplementary data
132
In vivo neuroprotective activity in hypoxia tolerance model in mice.
Compd.
n
Survival time (s)
0 mg/kg
133
134
1
40 mg/kg
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
a
b
c
d
e
f
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
1244 ꢀ 248
1206ꢀ 238
1205ꢀ 219
1112 ꢀ 123
1187 ꢀ 141
1411 ꢀ 177
1297 ꢀ 195
1265 ꢀ 179
1186 ꢀ 142
1107ꢀ 117
1202 ꢀ 175
1230 ꢀ 137
1137 ꢀ 112
1037 ꢀ 82
References
135
[
136
137
Q4 138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
1175 ꢀ 271
1314 ꢀ 183
1368 ꢀ 271
1290 ꢀ 164
*
*
*
*
*
*
g
h
i
[2] D.A. Bennett, R.V. Krishnamurthi, S. Barker-Collo, et al., The global burden of
ischemic stroke: findings of the GBD 2010 study, Global Heart 9 (2014) 107–112.
[3] A.S. Go, D. Mozaffarian, V.L. Roger, et al., Heart disease and stroke statistics—2013
update: a report from the American Heart Association, Circulation 127 (2013) e6–
e245.
**
1382 ꢀ 77
j
1136 ꢀ 149
1178 ꢀ 144
1172 ꢀ 163
1267 ꢀ 224
1185 ꢀ 106
1263 ꢀ 114
1135 ꢀ 140
1182 ꢀ 80
*
*
k
l
1363 ꢀ 98
1129 ꢀ 73
[
[
[
4] R. Mikulik, N. Wahlgren, Treatment of acute stroke: an update, J. Int. Med. 278
2015) 145–165.
5] P. Lyden, Thrombolytic therapy for acute stroke—not a moment to lose, N. Engl. J.
Med. 359 (2008) 1393–1395.
6] H. Yoshida, H. Yanai, Y. Namiki, et al., Neuroprotective effects of edaravone: a
novel free radical scavenger in cerebrovascular injury, CNS Drug Rev. 12 (2006)
(
m
n
o
p
q
r
1264 ꢀ 201
1193 ꢀ 93
*
1205ꢀ 115
1297 ꢀ 238
1209ꢀ 153
1144 ꢀ 175
1228 ꢀ 210
1192 ꢀ 195
1326 ꢀ 267
9–20.
1158 ꢀ 243
1139 ꢀ 195
1335 ꢀ 283
1358 ꢀ 238
[
7] S. Okuyama, M. Morita, A. Sawamoto, et al., Edaravone enhances brain-derived
neurotrophic factor production in the ischemic mouse brain, Pharmaceuticals 8
(2015) 176–185.
s
*
*
t
*
Lead 1
[8] T. Wada, H. Yasunaga, R. Inokuchi, et al., Effects of edaravone on early outcomes in
acute ischemic stroke patients treated with recombinant tissue plasminogen
activator, J. Neurol. Sci. 345 (2014) 106–111.
Control
10
1119 ꢀ 150
[9] K. Kikuchi, E. Tanaka, Y. Murai, S. Tancharoen, Clinical trials in acute ischemic
(
20 mL/kg)
stroke, CNS Drugs 28 (2014) 929–938.
[10] C.L. Liu, S.J. Liao, J.S. Zeng, et al., dl-3-n-Butylphthalide prevents stroke via
*
*
p < 0.05.
p < 0.01.
*
improvement of cerebral microvessels in RHRSP, J. Neurol. Sci. 260 (2007)
106–113.
[
11] L.H. Zhang, W.H.A. Yu, Y.X.J. Wang, et al., DL-3-n-Butylphthalide, an anti-oxidant
agent, prevents neurological deficits and cerebral injury following stroke per
functional analysis, magnetic resonance imaging and histological assessment,
Curr. Neurovasc. Res. 9 (2012) 167–175.
Table 4
In vivo neuroprotective activity in focal cerebral ischemia model in rats.
Compd.
Dose (mg/kg)
n
Infarct ration (%)
[12] J.M. Li, Y. Li, M. Ogle, et al., DL-3-n-Butylphthalide prevents neuronal cell death
after focal cerebral ischemia in mice via the JNK pathway, Brain Res. 1359 (2010)
7
7
7
7
7
a
2.5
2.5
2.5
2.5
2.5
2.5
3
3
3
3
3
3
11.31 ꢀ 2.34
5.43 ꢀ 3.33
9.57 ꢀ 2.39
5.99 ꢀ 3.71
5.67 ꢀ 3.84
10.28 ꢀ 3.34
216–226.
f
[
13] L.Y. Cui, X.Q. Liu, Y.C. Zhu, et al., Effects of dl-3-butylphthalide on treatment of
acute ischemic stroke with moderate symptoms: a multi-center, randomized,
double-blind, placebo-control trial, Chin. J. Neurol. 38 (2005) 251–254.
g
k
o
[14] L.Y. Cui, Y.C. Zhu, S. Gao, et al., Ninety-day administration of dl-3-n-butylphthalide
Control
for acute ischemic stroke: a randomized, double-blind trial, Chin. Med. J. 126
(2013) 3405–3410.
[
[
15] E.H. Lo, A new penumbra: transitioning from injury into repair after stroke, Nat.
Med. 14 (2008) 497–500.
16] W.D. Heiss, Ischemic penumbra: evidence from functional imaging in man, J.
Cereb. Blood Flow Metab. 20 (2000) 1276–1293.
118
4. Conclusion
119
120
121
122
123
124
125
126
127
In summary, a series of novel dicarbonyl piperazine derivatives
were designed, synthesized, and evaluated on their neuroprotec-
tive activity. The SARs revealed that methyl or methoxy mono-
introduction was favorable for neuroprotective activity, while
methylene introduction was not. It is worth mentioning that
compound 7o, containing a 2,5-dimethylpiperazin moiety, showed
good anti-ischemic stroke activity in vitro and in vivo, which
provided a good starting point for a potential candidate for the
development of neuroprotective agents.
[17] J.Q. Li, L.Y. Huang, Y.Y. Xia, et al., Synthesis of aroylpiperazine derivatives and their
anti-cerebral anoxia, anti-cerebral ischemia biological activities, Chin. J. Med.
Chem. 16 (2006) 6–14.
[
18] L.L. Jin, Y.C. Sheng, Y. Zhong, P. Zhu, Y.Y. Xia, Relation between therapeutic effects
and administration time of fenazinel dihydrochloride on focal cerebral ischemia
injury in rats, Chin. J. Pharm. 5 (2008) 356–358.
[
19] H. Jiang, Z.W. Yang, Y.Y. Chen, Z.A. Lu, F.M. Shen, Effective dose of fenazinel
dihvdrochloride in the treatment of cerebral infarction in rats, Guide China Med. 7
(2009) 77–78.
[20] D.J. Li, J.Q. Li, L.Y. Huang, et al., Protective effects of fenazinel dihydrochloride
on focal cerebral ischemic injury in rats, Chin. Pharmacol. Bull. 25 (2009) 716–
720.
[
21] T. Zhao, Z. Wei, F.M. Shen, Protective effects of fenazinel dihydrochloride against
stroke in stroke-prone spontaneously hypertensive rats, Acad. J. Second Mil. Med.
Univ. 12 (2011) 1282–1285.
1
28
Acknowledgment
1
1
29 Q3
This work was supported by Shanghai Natural Science
Foundation (no. 12ZR1450100).
30
1
31