Page 11 of 13
Chemical Science
Please do not adjust margins
Chemical Science
EDGE ARTICLE
C. Krebs, D. Galonić Fujimori, C. T. WalDshOIa: 1n0d.1J0.3M9/C. 7BSoCl0li5n3g7e8rA,
Acc. Chem. Res., 2007, 40, 484-492.
M. H. Sazinsky and S. J. Lippard, in Sustaining Life on Planet
Earth: Metalloenzymes Mastering Dioxygen and Other
Chewy Gases, eds. P. M. H. Kroneck and M. E. Sosa Torres,
Springer International Publishing, Cham, 2015, DOI:
10.1007/978-3-319-12415-5_6, pp. 205-256.
M. Puri and L. Que, Jr., Acc. Chem. Res., 2015, 48, 2443-2452.
X. Engelmann, I. Monte-Perez and K. Ray, Angew. Chem. Int.
Ed., 2016, 55, 7632-7649.
3
4
5
suspension changed from orange to beige. The suspension was
filtered and the residue was washed with Et2O (2 mL) to
remove most of the N(ArMe)3. After removing the Et2O by
filtration, the residue was suspended in DMSO-d6. The
suspension was filtered and one drop of concentrated
hydrochloric acid (HCl, 12 N) was added to the filtrate to
ensure that the TAML and the other products are not in their
deprotonated forms. The solution was then characterised by
1H NMR spectroscopy.
532-542.
6
7
8
9
J. T. Groves, J. Inorg. Biochem., 2006, 100, 434-447.
I. G. Denisov, T. M. Makris, S. G. Sligar and I. Schlichting,
Chem. Rev., 2005, 105, 2253-2278.
Oxidation of 1(Br) in the presence of DMOB
Compound 1,4-dimethoxybenzene (DMOB, 5.0 mg, 36
the Na salt of (1.7 mg, 3.6 mol), and TEABr (7.6 mg, 36
mol), were dissolved in CD3CN (0.50 mL). The 1H NMR
spectrum of the solution was recorded. Compound (ArMe)3N+
mol),
1
10 S. R. Bell and J. T. Groves, J. Am. Chem. Soc., 2009, 131, 9640-
9641.
11 J. Rittle and M. T. Green, Science, 2010, 330, 933.
12 C. J. Bougher, S. Liu, S. D. Hicks and M. M. Abu-Omar, J. Am.
Chem. Soc., 2015, 137, 14481-14487.
13 P. Leeladee, R. A. Baglia, K. A. Prokop, R. Latifi, S. P. de Visser
and D. P. Goldberg, J. Am. Chem. Soc., 2012, 134, 10397-
10400.
(3.2 mg, 7.4
mol) was added to the solution and was
1
characterised by H NMR spectroscopy after 5 minutes, and
after 24 hours with stirring.
14 R. A. Baglia, C. M. Krest, T. Yang, P. Leeladee and D. P.
Goldberg, Inorg. Chem., 2016, 55, 10800-10809.
15 T. J. Collins, Acc. Chem. Res., 2002, 35, 782-790.
16 I. Munoz, S. B., W. T. Lee, D. A. Dickie, J. J. Scepaniak, D.
Subedi, M. Pink, M. D. Johnson and J. M. Smith, Angew.
Chem. Int. Ed., 2015, 54, 10600-10603.
17 I. Cutsail, G. E., B. W. Stein, D. Subedi, J. M. Smith, M. L. Kirk
and B. M. Hoffman, J. Am. Chem. Soc., 2014, 136, 12323-
12336.
18 C. Kupper, J. A. Rees, S. Dechert, S. DeBeer and F. Meyer, J.
Am. Chem. Soc., 2016, 138, 7888-7898.
19 L. R. Widger, C. G. Davies, T. Yang, M. A. Siegler, O.
Troeppner, G. N. Jameson, I. Ivanovic-Burmazovic and D. P.
Goldberg, J. Am. Chem. Soc., 2014, 136, 2699-2702.
20 S. Sahu, B. Zhang, C. J. Pollock, M. Durr, C. G. Davies, A. M.
Confer, I. Ivanovic-Burmazovic, M. A. Siegler, G. N. Jameson,
Kinetics measurements of the reaction of oxidised 1(Br) with
varying concentrations of bromide anions
A solution of the Na salt of
in ACN (2.0 mL) was allowed to stir for 5 minutes to form 1(Br)
(ArMe)3N+ (40
L, 20 mM) was added to the solution and the
1 (0.20 mM) and TEABr (2 - 14 mM)
.
UV-visible spectrum of the reaction mixture was recorded at 5-
second intervals. Each kinetics data set was fitted to a single
exponential function and the time constant was determined by
a least-squares fitting procedure in Origin. The corresponding
pseudo first-order rate constant, kobs, was derived from the
reciprocal of the time constant. The second-order rate
constant, k, for the aromatic substitution of the oxidised 1(Br)
was determined from the linear fit of the plot of kobs against Br-
concentration.
C. Krebs and D. P. Goldberg, J. Am. Chem. Soc., 2016, 138
12791-12802.
,
21 W. Nam, Y. M. Lee and S. Fukuzumi, Acc. Chem. Res., 2014,
47, 1146-1154.
22 L. Que, Acc. Chem. Res., 2007, 40, 493-500.
Conflict of interest
23 A. D. Ryabov, in Adv. Inorg. Chem., eds. E. Rudi van and D. H.
Colin, Academic Press, 2013, vol. 65, pp. 117-163.
24 J. A. Kovacs, Acc. Chem. Res., 2015, 48, 2744-2753.
25 S. Sen Gupta, M. Stadler, C. A. Noser, A. Ghosh, B. Steinhoff,
D. Lenoir, C. P. Horwitz, K. W. Schramm and T. J. Collins,
Science, 2002, 296, 326-328.
There are no conflicts of interest to declare.
Acknowledgements
HSS is supported by the Nanyang Assistant Professorship and
and MOE Tier 1 grants (M4011611 and M4011791). HSS also
gratefully acknowledges the Agency for Science, Technology
and Research (A*STAR), AME IRG grants A1783c0002 and
A1783c0003, for funding this research. The authors
acknowledge support from the Solar Fuels Lab at NTU and the
SinBeRISE CREATE. JHL would like to thank Mr. Zonghan Hong
(NTU) for the XPS measurements, and Ms. Yijie Yang (NTU) for
the Raman spectroscopic measurements. KR is funded by
UniCat and the Heisenberg Professorship of DFG.
26 S. K. Khetan and T. J. Collins, Chem. Rev., 2007, 107, 2319-
2364.
27 S. Kundu, A. Chanda, S. K. Khetan, A. D. Ryabov and T. J.
Collins, Environ. Sci. Technol., 2013, 47, 5319-5326.
28 E. L. Demeter, S. L. Hilburg, N. R. Washburn, T. J. Collins and
J. R. Kitchin, J. Am. Chem. Soc., 2014, 136, 5603-5606.
29 J. W. Kee, Y. Y. Ng, S. A. Kulkarni, S. K. Muduli, K. Xu, R.
Ganguly, Y. Lu, H. Hirao and H. S. Soo, Inorg. Chem. Front.,
2016,
30 S. Gazi, W. K. H. Ng, R. Ganguly, A. M. P. Moeljadi, H. Hirao
and H. S. Soo, Chem. Sci., 2015, , 7130-7142.
3, 651-662.
6
31 H. Shao, S. K. Muduli, P. D. Tran and H. S. Soo, Chem.
Commun., 2016, 52, 2948-2951.
32 S. K. Muduli, S. Wang, S. Chen, C. F. Ng, C. H. A. Huan, T. C.
Notes and references
Sum and H. S. Soo, Beilstein J. Nanotechnol., 2014, 5, 517-
523.
1
2
W. Nam, Acc. Chem. Res., 2007, 40, 522-531.
J. Hohenberger, K. Ray and K. Meyer, Nat. Commun., 2012,
720.
33 H. Kotani, T. Suenobu, Y. M. Lee, W. Nam and S. Fukuzumi, J.
Am. Chem. Soc., 2011, 133, 3249-3251.
3
,
This journal is © The Royal Society of Chemistry 2018
Chem. Sci., 2018, 00, 1-3 | 11
Please do not adjust margins