Letter
NJC
8 J. R. Moffat, I. A. Coates, F. J. Leng and D. K. Smith,
Langmuir, 2009, 25, 8786.
9 S. L. Elmer, N. G. Lemcoff and S. C. Zimmerman, Macro-
molecules, 2007, 40, 8114.
10 M. Elsabahy and K. L. Wooley, J. Polym. Sci., Part A: Polym.
Chem., 2012, 50, 1869.
catalytic amount of glacial acetic acid (1 drop) was added to the
reaction mixture. After 3 h at reflux, 2 mL H2O was added and
cooled to 0 1C. 1 N NaOH (aq) solution was added and refluxed
for 20 min with vigorous stirring. After cooling to r.t., 2 N HCl
(aq) was added and the orange crude solid was collected by
filtration, washed with 50% aqueous cold ethanol and recrystal-
lized with ethanol to obtain the bright orange crystalline product
(206 mg, yield = 79%). Compound A was manually prepared
using Fmoc/t-Bu solid-phase peptide synthesis on rink amide
resin. Compound A was cleaved from the resin by the treatment
with TFA/water/triethylsilane (95/1/4) at room temperature for
2 h and purified by reversed-phased HPLC on preparative Varian
Dynamax C18 column eluting with a linear gradient of CH3CN/
water containing 0.1% TFA and stored as lyophilized powers at
0 1C. Rotational shear rheometry of hydrogels was performed on
a TA Instruments AR1000 stress-controlled rheometer. Compound A
was prepared at 10 mM in pure HPLC-grade water, PBS (without
Ca2+ and Mg2+), or saline, and incubated at room temperature
for 24 hours. The complex shear storage (G0) and loss (G00)
moduli of these self-assembled hydrogels were then measured
as a function of oscillatory stress. For photo-crosslinking gels in
pure water, the gels were first prepared in humidified, sealed
glass dishes for 24 h and subsequently exposed to UV light
(l = 365 nm) for 70 h before performing shear testing.
11 (a) J. Motoyanagi, T. Fukushima, N. Ishii and T. Aida, J. Am.
Chem. Soc., 2006, 128, 4220; (b) W. Jin, T. Fukushima,
A. Kosaka, M. Niki, N. Ishii and T. Aida, J. Am. Chem. Soc.,
2005, 127, 8284; (c) J. Motoyanagi, T. Fukushima, A. Kosaka,
N. Ishii and T. Aida, J. Polym. Sci., Part A: Polym. Chem., 2006,
44, 5120; (d) T. Yamamoto, T. Fukushima, Y. Yamamoto,
A. Kosaka, W. Jin, N. Ishii and T. Aida, J. Am. Chem. Soc.,
2006, 128, 14337; (e) W. Zhang, W. S. Jin, T. Fukushima,
N. Ishii and T. Aida, Angew. Chem., Int. Ed., 2009, 48, 4747.
12 (a) R. V. Ulijn and A. M. Smith, Chem. Soc. Rev., 2008, 37, 664;
(b) I. Cherny and E. Gazit, Angew. Chem., Int. Ed., 2008, 47, 4062;
(c) S. H. Kim and J. R. Parquette, Nanoscale, 2012, 4, 6940.
13 (a) M. Zhang, J. A. Gallagher, M. B. Coppock, L. M. Pantzar
and M. E. Williams, Inorg. Chem., 2012, 51, 11315;
(b) J. A. Gallagher, L. A. Levine and M. E. Williams, Eur.
J. Inorg. Chem., 2011, 4168.
14 (a) H. Shao, J. W. Lockman and J. R. Parquette, J. Am. Chem.
Soc., 2007, 129, 1884; (b) H. Shao, T. Nguyen, N. C. Romano,
D. A. Modarelli and J. R. Parquette, J. Am. Chem. Soc., 2009,
131, 16374.
15 H. Shao and J. R. Parquette, Chem. Commun., 2010, 46, 4285.
16 C. H. Krauch, S. Farid and G. O. Schenck, Chem. Ber./Recl.,
1966, 99, 625.
Notes and references
1 (a) S. R. Bull, M. O. Guler, R. E. Bras, P. N. Venkatasubramanian,
S. I. Stupp and T. J. Meade, Bioconjugate Chem., 2005, 16, 1343;
(b) S. R. Bull, M. O. Guler, R. E. Bras, T. J. Meade and S. I. Stupp,
Nano Lett., 2005, 5, 1.
17 S. R. Trenor, A. R. Shultz, B. J. Love and T. E. Long, Chem.
Rev., 2004, 104, 3059.
¨
18 (a) S. Inal, J. D. Kolsch, F. Sellrie, J. A. Schenk, E. Wischerhoff,
2 (a) J. D. Lear, Z. R. Wasserman and W. F. Degrado, Science, 1988,
240, 1177; (b) M. R. Ghadiri, J. R. Granja and L. K. Buehler,
Nature, 1994, 369, 301; (c) R. Ischakov, L. Adler-Abramovich,
L. Buzhansky, T. Shekhter and E. Gazit, Bioorg. Med. Chem., 2013,
21, 3517; (d) S. H. Kim, J. A. Kaplan, Y. Sun, A. Shieh, H.-L. Sun,
C. M. Croce, M. W. Grinstaff and J. R. Parquette, Chem. – Eur. J.,
2015, 21, 101–105.
3 C. Yan and D. J. Pochan, Chem. Soc. Rev., 2010, 39, 3528.
4 B. Rybtchinski, ACS Nano, 2011, 5, 6791.
5 (a) L. Aulisa, H. Dong and J. D. Hartgerink, Biomacromolecules,
2009, 10, 2694; (b) W. E. Hennink and C. F. van Nostrum, Adv.
Drug Delivery Rev., 2012, 64, 223; (c) Y. Ding, Y. Li, M. Qin, Y. Cao
and W. Wang, Langmuir, 2013, 29, 13299.
A. Laschewsky and D. Neher, J. Mater. Chem. B, 2013, 1, 6373;
(b) M. Cigan, J. Donovalova, V. Szocs, J. Gaspar, K. Jakusova and
A. Gaplovsky, J. Phys. Chem. A, 2013, 117, 4870.
19 R. N. Dsouza, U. Pischel and W. M. Nau, Chem. Rev., 2011,
111, 7941.
20 H. Dong, S. E. Paramonov, L. Aulisa, E. L. Bakota and
J. D. Hartgerink, J. Am. Chem. Soc., 2007, 129, 12468.
21 C. Tablet, I. Matei, E. Pincu, V. Meltzer and M. Hillebrand,
J. Mol. Liq., 2012, 168, 47.
22 T. Miyazawa and E. R. Blout, J. Am. Chem. Soc., 1961, 83, 712.
23 (a) P. Ponnumallayan and C. J. Fee, Langmuir, 2014, 30, 14250;
(b) L.-P. Ruan, H.-L. Luo, H.-Y. Zhang and X. Zhao, Macromol.
Res., 2009, 17, 597; (c) Y. Feng, M. Taraban and Y. B. Yu, Soft
Matter, 2012, 8, 11723.
6 J. V. M. Weaver and D. J. Adams, Soft Matter, 2010, 6, 2575.
7 C. E. Smith and H. Kong, Langmuir, 2014, 30, 3697.
3228 | New J. Chem., 2015, 39, 3225--3228
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015