NMR Studies of Chiral Discrimination
J. Am. Chem. Soc., Vol. 118, No. 17, 1996 4037
NOE studies5 which have been proved to be very powerful tools
for understanding the nature of chiral discrimination occurring
in solution between small molecules as exemplified by host-
guest complexation.8
mechanistic studies on chiral discrimination at a molecular level
have been done particularly by spectroscopic methods on
polymeric CSPs.15 Chiral polymers usually have a number of
different binding sites with a different affinity to enantiomers
and the determination of their exact structures in both solid and
solution is laborious. This makes it difficult to evaluate a precise
chiral recognition mechanism. The only exception may be some
special protein-ligand and DNA-drug complexes, whose
structures have been determined by either X-ray or NMR
analysis in solution.16
The CSPs composed of chiral polymers such as polyacryl-
amides,9 one-handed helical polymethacrylates,10 polyamides,11
proteins,12 and polysaccharide derivatives13,14 have also been
extensively studied, many of which are now commercially
available. In contrast to the small-molecule CSPs, very few
(7) (a) Pirkle, W. H.; Burke, J. A., III; Wilson, S. R. J. Am. Chem. Soc.
1989, 111, 9222-9223. (b) Francotte, E.; Rihs, G. Chirality 1989, 1, 80-
85.
We have found that phenylcarbamate derivatives of cellulose
and amylose show high resolving power as CSPs when coated
on macroporous silica gel and can separate a wide range of
racemates including many drugs.14 Some of the derivatives have
been commercialized and used as very popular CSPs.17 How-
ever, the chiral recognition mechanism on the phenylcarbamate
derivatives at a molecular level remains elusive, although a
qualitative explanation has been given on the basis of chro-
matographic enantioseparation14 and computational studies.18
An NMR spectroscopic study on the chiral recognition
mechanism of polymer systems often fails because most
polymers are soluble only in the solvents which prevent
enantiomer discrimination. Most phenylcarbamate derivatives
of the polysaccharides with high chiral resolving power as CSPs
are typical cases. They are soluble only in polar solvents, such
as tetrahydrofuran (THF), acetone, and pyridine. In such polar
solvents, the phenylcarbamate derivatives show poor chiral
recognition for enantiomers because the solvents preferentially
interact with the polar carbamate residues which are the most
important binding site for chiral discrimination.
(8) (a) Cram, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009-1020.
(b) Lehn, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89-112. (c)
Dharanipragada, R.; Ferguson, S. B.; Diederich, F. J. Am. Chem. Soc. 1988,
110, 1679-1690. (d) Echavarren, A.; Gala´n, A.; Lehn, J. M.; Mendoza, de
J. J. Am. Chem. Soc. 1989, 111, 4994-4995. (e) Spisni, A.; Corradini, R.;
Marchelli, R.; Dossena, A. J. Org. Chem. 1989, 54, 684-688. (f) Sanderson,
P. E. J.; Kilburn, J. D.; Still, W. C. J. Am. Chem. Soc. 1989, 111, 8314-
8315. (g) Liu, R.; Sanderson, P. E. J.; Still, W. C. J. Org. Chem. 1990, 55,
5184-5186. (h) Rebek, J., Jr. Angew. Chem., Int. Ed. Engl. 1990, 29, 245-
255. (i) Webb, T. H.; Suh, H.; Wilcox, C. S. J. Am. Chem. Soc. 1991, 113,
8554-8555. (j) Seel, C.; Vo¨gtle, F. Angew. Chem., Int. Ed. Engl. 1992,
31, 528-549. (k) Cotero´n, J. M.; Vicent, C.; Bosso, C.; Penade´s, S. J. Am.
Chem. Soc. 1993, 115, 10066-10076. (l) Webb, T. H.; Wilcox, C. S. Chem.
Soc. ReV. 1993, 383-395. (m) Bo¨hmer, V. Angew. Chem., Int. Ed. Engl.
1995, 34, 713-745.
(9) (a) Blaschke, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 13-24. (b)
Blaschke, G. J. Liq. Chromatogr. 1986, 9, 341-368.
(10) (a) Yuki, H.; Okamoto, Y.; Okamoto, I. J. Am. Chem. Soc. 1980,
102, 6356-6358. (b) Okamoto, Y.; Okamoto, I.; Yuki, H.; Murata, S.;
Noyori, R.; Takaya, H. J. Am. Chem. Soc. 1981, 103, 6971-6973. (c)
Okamoto, Y.; Hatada, K. J. Liq. Chromatogr. 1986, 9, 369-384. (d)
Okamoto, Y.; Yashima, E. Prog. Polym. Sci. 1990, 15, 263-298. (e)
Chance, J. M.; Geiger, J. H.; Okamoto, Y.; Aburatani, R.; Mislow, K. J.
Am. Chem. Soc. 1990, 112, 3540-3547. (f) Okamoto, Y.; Nakano, T. Chem.
ReV. 1994, 94, 349-372.
However, we recently found that cellulose tris(4-(trimethyl-
silyl)phenylcarbamate) (CTSP)19 is soluble in chloroform and
(11) Saigo, K. Prog. Polym. Sci. 1992, 17, 35-86.
1
shows chiral discrimination in H NMR spectroscopy as well
(12) For reviews, see ref 4a,b,g. (a) Hermansson, J.; Eriksson, M. J. Liq.
Chromatogr. 1986, 9, 621-639. (b) Allenmark, S. G. J. Liq. Chromatogr.
1986, 9, 425-442. (c) Miwa, T.; Miyakawa, T. J. Chromatogr. 1987, 408,
316-322. (d) Erlandsson, P.; Marle, I.; Hansson, L.; Isaksson, R.; Pettersson,
C.; Pettersson, G. J. Am. Chem. Soc. 1990, 112, 4573-4574. (e) Wainer,
I. W.; Jadaud, P.; Schombaum, G. R.; Kadadker, S. V.; Henry, M. P.
Chromatographia 1988, 25, 903-907. (f) Noctor, T.; Felix, G.; Wainer, I.
W. Chromatographia 1991, 31, 55-59. (g) Haginaka, J.; Murashima, T.;
Seyama, C. J. Chromatogr. A 1994, 666, 203-210.
as in HPLC. For instance, the methine proton of trans-2,3-
diphenyloxirane was split into two singlet resonances in the
presence of CTSP,19 indicating that CTSP can discriminate the
enantiomers even in solution. The elution order of trans-2,3-
diphenyloxirane on CTSP correlated well with the downfield
1
shift of the (-)-isomer observed in the H NMR. CTSP can
work as the chiral shift reagent and discriminates the enanti-
omers of the Tro¨ger base, benzoin, mandelic acid, and several
sec-alcohols, such as 2-butanol and 2-octanol in CDCl3.20
However, the differences in the chemical shifts of the enanti-
omers in the presence of CTSP were too small to obtain reliable
(13) For cellulose esters as CSPs, see: (a) Hesse, G.; Hagel, R.
Chromatographia 1973, 6, 277-280. (b) Becher, G.; Mannschreck, A.
Chem. Ber. 1981, 114, 2365-2368. (c) Okamoto, Y.; Kawashima, M.;
Yamamoto, K.; Hatada, K. Chem. Lett. 1984, 739-742. (d) Ichida, A.;
Shibata, T.; Okamoto, I.; Yuki, Y.; Namikoshi, H.; Toda, Y. Chro-
matographia 1984, 19, 280-284. (e) Francotte, E.; Wolf, R. M.; Lohmann,
D. J. Chromatogr. 1985, 347, 25-37. (f) Okamoto, Y.; Aburatani, R.;
Hatada, K. J. Chromatogr. 1987, 389, 95-102. (g) Wainer, I. W.; Stiffin,
R. M.; Shibata, T. J. Chromatogr. 1987, 139, 139-151. (h) Francotte, E.;
Wolf, R. M. Chirality 1990, 2, 16-31. (i) Francotte, E. J. Chromatogr. A
1994, 666, 565-601.
(14) For reviews of phenylcarbamates of polysaccharides as CSPs, see:
(a) Shibata, T.; Okamoto, I.; Ishii, K. J. Liq. Chromatogr. 1986, 9, 313-
340. (b) Okamoto, Y.; Aburatani, R.; Hatano, K.; Hatada, K. J. Liq.
Chromatogr. 1988, 11, 2147-2163. (c) Okamoto, Y.; Kaida, Y. J. High
Resolut. Chromatogr. 1990, 13, 708-712. (d) Okamoto, Y.; Kaida, Y.;
Aburatani, R.; Hatada, K. In Chiral Separations by Liquid Chromatography;
Ahuja, S., Ed.; ACS Symposium Series 471; American Chemical Society:
Washington, DC, 1991; pp 101-113. (e) Okamoto, Y.; Kaida, Y. J.
Chromatogr. A 1994, 666, 403-419. (f) Dingene, J. In A Practical Approach
to Chiral Separations by Liquid Chromatography; Subramanian, G., Ed.;
VCH: New York, 1994; Chapter 6. (g) Oguni, K.; Oda, H.; Ichida, A. J.
Chromatogr. A 1995, 694, 91-100. (h) Yashima, E.; Okamoto, Y. Bull.
Chem. Soc. Jpn. 1995, 68, 3289-3307. For other leading references, see:
(i) Okamoto, Y.; Kawashima, M.; Hatada, K. J. Am. Chem. Soc. 1984, 106,
5357-5359. (j) Okamoto, Y.; Kawashima, M.; Hatada, K. J. Chromatogr.
1986, 363, 173-186. (k) Okamoto, Y.; Aburatani, R.; Hatada, K. Bull.
Chem. Soc. Jpn. 1990, 63, 955-957. (l) Okamoto, Y.; Ohashi, T.; Kaida,
Y.; Yashima, E. Chirality 1993, 5, 616-621. (m) Ishikawa, A.; Shibata, T.
J. Liq. Chromatogr. 1993, 16, 859-878. (n) Chankvetadze, B.; Yashima,
E.; Okamoto, Y. J. Chromatogr. A 1994, 670, 39-49. (o) Yashima, E.;
Fukaya, H.; Okamoto, Y. J. Chromatogr. A 1994, 677, 11-19. (p) Maeda,
K; Okamoto, Y; Morlender, N; Eventova, I; Biali, S. E; Rappoport, Z. J.
Am. Chem. Soc. 1995, 117, 9686-9689.
(15) For NMR studies of chiral recognition on polymeric CSPs, see: (a)
Oguni, K.; Matsumoto, A.; Isokawa, A. Polym. J. 1994, 26, 1257-1261.
(b) Pinkerton, T. C.; Howe, W. J.; Ulrich, E. L.; Comiskey, J. P.; Haginaka,
J.; Murashima, T.; Walkenhorst, W. F.; Westler, W. M.; Markley, J. L.
Anal. Chem. 1995, 67, 2354-2367. For computational studies of chiral
recognition on polymeric CSPs, see: (c) Wolf, R. M.; Francotte, E.;
Lohmann, D. J. Chem. Soc., Perkin Trans. 2 1988, 893-901.
(16) For reviews: (a) Schulz, G. E.; Schirmer, R. H. Principles of Protein
Structure; Springer-Verlag: New York, 1979; Chapter 10. (b) Saenger, W.
Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1984;
Chapter 16. (c) Wu¨thrich, K. NMR of Proteins and Nucleic Acids; Wiley:
New York, 1986; Chapter 15 and references cited therein. (d) Lee, M.;
Shea, R. G.; Hartley, J. A.; Kissinger, K.; Pon, R. T.; Vesnaver, G.;
Breslauer, K. J.; Dabrowiak, J. C.; Lown, J. W. J. Am. Chem. Soc. 1989,
111, 345-354. (e) Zhang, X.; Patel, D. J. Biochemistry 1990, 29, 9451-
9466. (f) Eriksson, M.; Leijon, M.; Hiort, C.; Norde´n, B.; Gra¨ulund, A. J.
Am. Chem. Soc. 1992, 114, 4933-4934. (g) Paloma, L. G.; Smith, J. A.;
Chazin, W. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1994, 116, 3697-3708.
(h) Blasko´, A.; Browne, K. A.; Bruice, T. C. J. Am. Chem. Soc. 1994, 116,
3726-3737.
(17) Commercialized as CHIRALCEL and CHIRALPAK by Daicel
Chemical Industries, Ltd., Tokyo, Japan.
(18) Yashima, E.; Yamada, M.; Kaida, Y.; Okamoto, Y. J. Chromatogr.
A 1995, 694, 347-354.
(19) Yashima, E.; Yamada, M.; Okamoto, Y. Chem. Lett. 1994, 579-
582.
(20) Okamoto, Y.; Yashima, E. Macromol. Symp. 1995, 99, 15-23.