C O M M U N I C A T I O N S
Acknowledgment. The authors thank the NSF (CHE-0317083),
the Nebraska Research Initiative, and the Alfred P. Sloan Founda-
tion (fellowship to D.B.B.) for support.
Supporting Information Available: Experimental methods and
synthetic characterization data. This material is available free of charge
References
(1) Reviews: (a) Reetz, M. T. Compr. Coord. Chem. II 2004, 9, 509-548.
(b) Traverse, J. F.; Snapper, M. L. Drug DiscoVery Today 2002, 7, 1002-
1012. (c) Gilbertson, S. R. Prog. Inorg. Chem. 2001, 50, 433-471.
(2) (a) Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 1999, 121, 4306-
4307. (b) Mennen, S. M.; Blank, J. T.; Tran-Dube, M. B.; Imbriglio, J.
E.; Miller, S. J. Chem. Commun. 2005, 195-197. (c) Mennen, S. M.;
Gipson, J. D.; Kim, Y. R.; Miller, S. J. J. Am. Chem. Soc. 2005, 127,
1654-1655. (d) Greenfield, S. J.; Agarkov, A.; Gilbertson, S. R. Org.
Lett. 2003, 5, 3069-3072. (e) Kacprzynski, M. A.; Hoveyda, A. H. J.
Am. Chem. Soc. 2004, 126, 10676-10681. (f) Burgess, K.; Lim, H.-J.;
Porte, A. M.; Sulikowski, G. A. Angew. Chem., Int. Ed. 1996, 35, 220-
222. (g) Francis, M. B.; Jacobsen, E. N. Angew. Chem., Int. Ed. 1999,
38, 937-941. (h) Josephsohn, N. S.; Kuntz, K. W.; Snapper, M. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 11594-11599. (i) Porter,
J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc.
2001, 123, 984-985.
Figure 1. Predicted (double-cuvette ISES) vs observed enantioselectivities
for the HKR of (()-propylene oxide.
(3) (a) Stambuli, J. P.; Hartwig, J. F. Curr. Opin. Chem. Biol. 2003, 7, 420-426.
(b) Wahler, D.; Reymond, J.-L. Curr. Opin. Biotechnol. 2001, 12, 535-
544. (c) Loch, J. A.; Crabtree, R. H. Pure Appl. Chem. 2001, 73, 119-28.
(4) (a) Reetz, M. T.; Becker, M. H.; Kuhling, K. M.; Holzwarth, A. Angew.
Chem., Int. Ed. 1998, 37, 2647-2650. (b) Taylor, S. J.; Morken, J. P.
Science 1998, 280, 267-270. (c) Badalassi, F.; Klein, G.; Crotti, P.;
Reymond, J.-L. Eur. J. Org. Chem. 2004, 2557-2566. (d) Stauffer, S.
R.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 6977-6985. (e) Moreira,
R.; Havranek, M.; Sames, D. J. Am. Chem. Soc. 2001, 123, 3927-3931.
(f) Harris, R. F.; Nation, A. J.; Copeland, G. T.; Miller, S. J. J. Am. Chem.
Soc. 2000, 122, 11270-11271. (g) Lavastre, O.; Morken, J. P. Angew.
Chem., Int. Ed. 1999, 38, 3163-3165. (h) Cooper, A. C.; McAlexander,
L. H.; Lee, D.-H.; Torres, M. T.; Crabtree, R. H. J. Am. Chem. Soc. 1998,
120, 9971-9972.
(5) (a) Porte, A. M.; Reibenspies, J.; Burgess, K. J. Am. Chem. Soc. 1998,
120, 9180-9187. (b) Mikami, K.; Angelaud, R.; Ding, K.; Ishii, A.;
Tanaka, A.; Sawada, N.; Kudo, K.; Senda, M. Chem. Eur. J. 2001, 7,
730-737. (c) Markert, C.; Pfaltz, A. Angew. Chem., Int. Ed. 2004, 43,
2498-2500. (d) Guo, J.; Wu, J.; Siuzdak, G.; Finn, M. G. Angew. Chem.,
Int. Ed. 1999, 38, 1755-1758. (e) Reetz, M. T.; Becker, M. H.; Klein,
H.-W.; Stockigt, D. Angew. Chem., Int. Ed. 1999, 38, 1758-1761. (f)
Korbel, G. A.; Lalic, G.; Shair, M. D. J. Am. Chem. Soc. 2001, 123, 361-
362. (g) Zhu, L.; Anslyn, E. V. J. Am. Chem. Soc. 2004, 126, 3676-3677.
(6) (a) Janes, L. E.; Kazlauskas, R. J. J. Org. Chem. 1997, 62, 4560-4561.
(b) Jarvo, E. R.; Evans, C. A.; Copeland, G. T.; Miller, S. J. J. Org. Chem.
2001, 66, 5522-7. (c) Moore, B. D.; Stevenson, L.; Watt, A.; Flitsch, S.;
Turner, N. J.; Cassidy, C.; Graham, D. Nat. Biotechnol. 2004, 22, 1133-8.
(7) Evans, M. A.; Morken, J. P. J. Am. Chem. Soc. 2002, 124, 9020-9021.
(8) (a) Berkowitz, D. B.; Maiti, G. Org. Lett. 2004, 6, 2661-2664. (b)
Berkowitz, D. B.; Shen, W.; Maiti, G. Tetrahedron: Asymmetry 2004,
15, 2845-2851. (c) Berkowitz, D. B.; Bose, M.; Choi, S. Angew. Chem.,
Int. Ed. 2002, 41, 1603-1607.
(9) Methods using proteins as “chiral sensors” to predict product ee, post-
workup. Enzymes: (a) Abato, P.; Seto, C. T. J. Am. Chem. Soc. 2001,
123, 9206-9207. (b) Li, Z.; Buetikofer, L. Witholt, B. Angew. Chem.,
Int. Ed. 2004, 43, 1698-1702. (c) Onaran, M. B.; Seto, C. T. J. Org.
Chem. 2003, 68, 8136-8141. (d) Janes, L. E.; Lowendahl, A. C.;
Kazlauskas, R. J. Chem. Eur. J. 1998, 4, 2324-2331. Antibodies: (e)
Matsushita, M.; Yoshida, K.; Yamamoto, N.; Wirsching, P.; Lerner, R.
A.; Janda, K. D. Angew. Chem., Int. Ed. 2003, 42, 5984-5987. (f) Taran,
F.; Gauchet, C.; Mohar, B.; Meunier, S.; Valleix, A.; Renard, P. Y.;
Creminon, C.; Grassi, J.; Wagner, A.; Mioskowski, C. Angew. Chem.,
Int. Ed. 2002, 41, 124-27.
(10) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.;
Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237-40.
(11) (a) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen,
K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc.
2002, 124, 1307-1315. (b) Jacobsen, E. N. Acc. Chem. Res. 2000, 33,
421-431. Note: No apparent erosion in ee was seen in comparing biphasic
ISES conditions with Jacobsen conditions (see SI).
Figure 2. Predicted (ISES) vs observed (NMR) relative rates (normalized
to 4b) for the Co(III)-salen-mediated HKR of (()-propylene oxide.
(cuvette 2), respectively, are then added. The increase in absorbance
at 340 nm can be followed for several such sets in parallel by UV-
vis spectrophotometry. The kinetic data are then used to make the
double-cuvette ISES predictions. A comparison of the predicted
and measured ee’s is presented in Figure 1. Of 49 new salens
targeted, 42 were obtained, and 25 gave active Co(III)-catalysts.
Above a 65% ee threshold in either direction, ISES found 9 of 11
true hits (18% false negatives) and succeeded in 9 of its 12
predictions (25% false positives). Note that the measured ee’s are
for the HKR under the neat conditions typically used in Jacobsen’s
studies,11 whereas the predicted ee’s are for the bilayer used in
double-cuvette ISES. Figure 2 compares the relative rates predicted
1
by ISES with those observed in a bilayer by H NMR. Observed
relative rates agree with ISES predictions to within 25% in 9 of 10
cases measured, with the Co(III)-5d catalyst displaying slightly
greater variance.
Interesting “combinatorial hits” include the finding that 2-hy-
droxy-1-naphthaldehyde (c) yields catalysts with very low activity,
whereas 1-hydroxy-2-naphthaldehyde (d) is the best partner for
â-pinene-derived diamine 1. Furthermore, a remarkable inversion
of stereoselectivity is observed for salens emanating from the new
â-D-fructopyranose-based diamine 7, upon going from the 3,5-di-
tert-butylsalicylaldehyde partner to the sterically less encumbered
3,5-diiodo congener.
More work is needed to define the scope and limitations of
double-cuvette ISES. Candidate reactions must tolerate some water,
if run under biphasic conditions, but may be run under inert
atmosphere.8 The ISES method has the advantage that the reactant
under study need not be altered by installing a chromophore.
However, appropriate reporting enzymes (e.g., dehydrogenases)
must be available that recognize the reaction product. In addition
to other kinetic resolutions related to the HKR, it should be possible
to apply double-cuvette ISES to reactions in which chirality is
installed de novo in achiral substrates. Transformations such as
carbonyl additions, ketone reductions, and alkene oxidations, for
example, would appear to be good target reaction types with which
to explore this approach.
(12) Matos, J. R.; Smith, M. B.; Wong, C. H. Bioorg. Chem. 1985, 13, 121-30.
(13) HLADH displays an S:R relative velocity that increases from 2.6 to 3.9,
in going from 100 to 4 mM fixed diol concentrations, whereas TBADH
displays an R:S relative velocity that ranges from 8.4 to 10.7 between 80
and 3 mM. Consistent with this, for HLADH, [(Vmax/Km)S ÷ (Vmax/Km)R]
) 3.6 and, for TBADH, [(Vmax/Km)R ÷ (Vmax/Km)S] ) 11. Relative
velocities do not vary greatly with concentration as the antipodal diol
Km’s for each enzyme are in the range of 20 ( 5 mM. We thus set an
approximate (enantio)selectivity factor for each enzyme across the
concentration range of the ISES experiment. Expressions were then derived
for the enantioselectivity (i.e., [(R)-diol]/[(S)-diol]) and for relative rate
(i.e., total diol), assuming that observed ISES rates (∆Abs/time) could be
approximated as the {R-Units} × {[(R)-diol] + ([(S)-diol]/Sel)} (see SI
for details).
JA052010B
9
J. AM. CHEM. SOC. VOL. 127, NO. 24, 2005 8611