Journal of the American Chemical Society p. 17683 - 17693 (2017)
Update date:2022-09-26
Topics:
Chang, Alice B.
Lin, Tzu-Pin
Thompson, Niklas B.
Luo, Shao-Xiong
Liberman-Martin, Allegra L.
Chen, Hsiang-Yun
Lee, Byeongdu
Grubbs, Robert H.
Grafting density and graft distribution impact the chain dimensions and physical properties of polymers. However, achieving precise control over these structural parameters presents long-standing synthetic challenges. In this report, we introduce a versatile strategy to synthesize polymers with tailored architectures via grafting-through ring-opening metathesis polymerization (ROMP). One-pot copolymerization of an ω-norbornenyl macromonomer and a discrete norbornenyl comonomer (diluent) provides opportunities to control the backbone sequence and therefore the side chain distribution. Toward sequence control, the homopolymerization kinetics of 23 diluents were studied, representing diverse variations in the stereochemistry, anchor groups, and substituents. These modifications tuned the homopolymerization rate constants over 2 orders of magnitude (0.36 M-1 s-1 < khomo < 82 M-1 s-1). Rate trends were identified and elucidated by complementary mechanistic and density functional theory (DFT) studies. Building on this foundation, complex architectures were achieved through copolymerizations of selected diluents with a poly(d,l-lactide) (PLA), polydimethylsiloxane (PDMS), or polystyrene (PS) macromonomer. The cross-propagation rate constants were obtained by nonlinear least-squares fitting of the instantaneous comonomer concentrations according to the Mayo-Lewis terminal model. In-depth kinetic analyses indicate a wide range of accessible macromonomer/diluent reactivity ratios (0.08 < r1/r2 < 20), corresponding to blocky, gradient, or random backbone sequences. We further demonstrated the versatility of this copolymerization approach by synthesizing AB graft diblock polymers with tapered, uniform, and inverse-tapered molecular "shapes." Small-angle X-ray scattering analysis of the self-assembled structures illustrates effects of the graft distribution on the domain spacing and backbone conformation. Collectively, the insights provided herein into the ROMP mechanism, monomer design, and homo- and copolymerization rate trends offer a general strategy for the design and synthesis of graft polymers with arbitrary architectures. Controlled copolymerization therefore expands the parameter space for molecular and materials design.
View MoreContact:+86-913-2223392
Address:No. 32, Xinanjing Road, Weinan City, Shaanxi Province, 714000, China
Tianjin Tensing Fine Chemical Research Develop Centre
Contact:86-022-23718576,13032267585
Address:2-2-201,13 Guiyuan road,Huayuan Industry district,Tianjin,china
Jiangsu Jiuri Chemical Co.,Ltd.
Contact:+86-519-82118868
Address:Tianwang Town, Jurong City, Jiangsu Province, China
Geen Chemical Technology Co., Ltd
Contact:86-769-21660847
Address:1408, Yingfeng Commercial Center, Nancheng District
Hangzhou Hysen Pharma co.,Ltd.
website:http://www.hysenpharma.cn/
Contact:0086-571-88298791
Address:#701,Gudun Road Hangzhou
Doi:10.1007/BF00953616
(1989)Doi:10.1016/j.tetlet.2003.10.107
(2004)Doi:10.1002/jhet.5570430122
(2006)Doi:10.1002/adsc.200303184
(2004)Doi:10.1021/acs.orglett.5b01540
(2015)Doi:10.1016/S0040-4039(00)87893-4
(1988)