Page 7 of 8
Journal of Materials Chemistry C
Please do not adjust margins
Journal Name
ARTICLE
Chem. Commun., 2008, 34, 3998-4000D. OI: 10.1039/C9TC01905G
16 P. Alam, G. Kaur, C. Climent, S. Pasha, D. Casanova, P.
Alemany, A. R. Choudhury and I. R. Laskar, Dalton Trans.,
2014, 43, 16431-16440.
17 M.-X. Zhu, W. Lu, N. Zhu and C.-M. Che, Chem. Eur. J., 2008,
14, 9736-9746.
18 G.-G. Shan, D.-X. Zhu, H.-B. Li, P. Li, Z.-M. Su and Y. Liao, Dalton
Transactions, 2011, 40, 2947-2953.
19 V. Sathish, A. Ramdass, Z.-Z. Lu, M. Velayudham, P.
Thanasekaran, K.-L. Lu and S. Rajagopal, J. Phys. Chem. B,
2013, 117, 14358-14366.
20 X.-G. Hou, Y. Wu, H.-T. Cao, H.-Z. Sun, H.-B. Li, G.-G. Shan and
Z.-M. Su, Chemical Communications, 2014, 50, 6031-6034.
21 Y. Wu, H.-Z. Sun, H.-T. Cao, H.-B. Li, G.-G. Shan, Y.-A. Duan, Y.
Geng, Z.-M. Su and Y. Liao, Chemical Communications, 2014,
50, 10986-10989.
efficiency compared with series
methoxyl group at the 4th position of the Schiff base ligand.
Particularly, we have developed novel water-soluble
1 because of the existence of
a
thermosensitive probe P1 by incorporating this kind of AIPE
luminogen in N-isopropylacrylamide hydrogel, which showed
good biocompatibility and stability and could be applied to
intracellular temperature distribution imaging. To the best of
our knowledge, this is the first example of using AIPE luminogen
to construct thermosensitive luminescent probe. In the future
work, efforts will be made to optimize the polymer
configuration and polymerization methods to prepare more
efficient and stable high-resolution temperature-sensitive
probe.
22 Q. Zhao, C. Huang and F. Li, Chem. Soc. Rev., 2011, 40, 2508-
2524.
23 K. Y. Zhang, Q. Yu, H. J. Wei, S. J. Liu, Q. Zhao and W. Huang,
Chem. Rev., 2018, 118, 1770-1839.
Conflicts of interest
There are no conflicts to declare.
24 V. H. Houlding and V. M. Miskowski, Coordin. Chem. Rev.,
1991, 111, 145-152.
25 V. W. W. Yam, K. M. C. Wong and N. Y. Zhu, J. Am. Chem. Soc.,
2002, 124, 6506-6507.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21504040). Natural Science Foundation of
Jiangsu Higher Education Institutions (15KJB150012). The
National Science Foundation of China (81672508). China-
Sweden Joint Mobility Project (51811530018). The National Key
Basic Research Program of China (973 Program,
2015CB932200). We are grateful to the High Performance
Computing Center of Nanjing Tech University for supporting the
computational resources.
26 W. Y. Wong, G. J. Zhou, X. M. Yu, H. S. Kwok and B. Z. Tang,
Adv. Funct. Mater., 2006, 16, 838-846.
27 K. M.-C. Wong and V. W.-W. Yam, Coordin. Chem. Rev., 2007,
251, 2477-2488.
28 C. Y.-S. Chung and V. W.-W. Yam, Chem. Sci., 2013,
29 H.-L. Au-Yeung, A. Y.-Y. Tam, S. Y.-L. Leung and V. W.-W. Yam,
Chem. Sci., 2017, , 2267-2276.
4, 377-387.
8
30 S. Liu, H. Sun, Y. Ma, S. Ye, X. Liu, X. Zhou, X. Mou, L. Wang, Q.
Zhao and W. Huang, J. Mater. Chem., 2012, 22, 22167-22173.
31 H. Honda, Y. Ogawa, J. Kuwabara and T. Kanbara, Eur. J. Inorg.
Chem., 2014, 11, 1865-1869.
32 S. S. Pasha, P. Alam, A. Sarmah, R. K. Roy and I. R. Laskar, RSC
Adv., 2016, 6, 87791-87795.
References
33 Q. Zhao, L. Li, F. Li, M. Yu, Z. Liu, T. Yi and C. Huang, Chem.
Commun., 2008, , 685-687.
6
1
2
Y. Shirota and H. Kageyama, Chem. Rev., 2007, 107, 953-1010.
Y. Tao, C. Yang and J. Qin, Chem. Soc. Rev., 2011, 40, 2943-
2970.
34 X. Mou, Y. Wu, S. Liu, M. Shi, X. Liu, C. Wang, S. Sun, Q. Zhao,
X. Zhou and W. Huang, J. Mater. Chem., 2011, 21, 13951-
13962.
3
4
L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne
and J. T. Hupp, Chem. Rev., 2012, 112, 1105-1125.
H. Sun, S. Liu, W. Lin, K. Y. Zhang, W. Lv, X. Huang, F. Huo, H.
Yang, G. Jenkins, Q. Zhao and W. Huang, Nat Commun, 2014,
35 H. Sun, L. Yang, H. Yang, S. Liu, W. Xu, X. Liu, Z. Tu, H. Su, Q.
Zhao and W. Huang, RSC Adv., 2013, 3, 8766-8776.
36 C. H. Shin, J. O. Huh, M. H. Lee, and Y. Do, Dalton Trans., 2009,
33, 6476-6479.
5
, 3601.
37 J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R.
Bau, and M. E. Thompson, Inorg. Chem., 2002, 41, 3055-3066.
38 N. Ide and T. Fukuda, Macromolecules, 1997, 30, 4268-4271.
39 S. Ito, Kobunshi Ronbunshu 1989, 46, 437-443.
40 S. Uchiyama, Y. Matsumura, A. Prasanna de Silva, and K. Iwai,
Anal. Chem., 2003, 75, 5926-5935
41 C. Gota, S. Uchiyama, and T. Ohwada, Analyst 2007, 132, 121-
126.
42 T. Mosmann, J. Immunol. Methods 1983, 65, 55-63.
5
6
S. A. Jenekhe and J. A. Osaheni, Science, 1994, 265, 765-768.
C. Wu, H. Peng, Y. Jiang and J. McNeill, J. Phys. Chem. B, 2006,
110, 14148-14154.
7
8
9
B. S. Gaylord, S. J. Wang, A. J. Heeger and G. C. Bazan, J. Am.
Chem. Soc., 2001, 123, 6417-6418.
C.-L. Chiang, S.-M. Tseng, C.-T. Chen, C.-P. Hsu and C.-F. Shu,
Adv. Funct. Mater., 2008, 18, 248-257.
J. D. Luo, Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu,
H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu and B. Z. Tang,
Chem. Commun., 2001, 18, 1740-1741.
10 B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, J. Am. Chem.
Soc., 2002, 124, 14410-14415.
11 Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011, 40
,
5361-5388.
12 J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, Chem. Soc. Rev.,
2011, 40, 3483-3495.
13 J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang,
Adv. Mater., 2014, 26, 5429-5479.
14 B. Manimaran, P. Thanasekaran, T. Rajendran, R.-J. Lin, I. J.
Chang, G.-H. Lee, S.-M. Peng, S. Rajagopal and K.-L. Lu, Inorg.
Chem., 2002, 41, 5323-5325.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins