2538 J . Org. Chem., Vol. 64, No. 7, 1999
Notes
2H), 3.56 (bs, NH, 1H), 4.63 (bs, 1H, NH), 6.48 (m, 2H), 6.58
(m, 2H), 6.7 (m, 1H), 7.15 (m, 2H), 8.02 (m, 2H); 13C NMR
(CDCl3, 75 MHz) δ 24.4, 24.6, 32.2, 32.6, 56.9, 57.4, 111.5, 113.4,
118.0, 126.4, 129.5, 138.0, 147.1, 152.9; LCMS (APCI, m/z) 312
(M+ + 1). Anal. Calcd for C18H21N3O2: C, 69.45; H, 6.75; N,
13.50. Found: C, 69.38; H, 6.82; N, 13.42.
reaction was also smooth in a disubstituted acyclic
substrate (entry 23).
The worthy feature of the reaction is that highly
deactivated amines such as p-nitroaniline also opened the
aziridines in high yield. It is remarkable that unactivated
aziridines could be opened with aromatic amines under
very mild conditions. This kind of result is quite unprec-
edented in the literature for aziridine chemistry.
The unusual feature of this reaction is that only
aromatic amines opened the aziridines. Aliphatic amines,
such as diethylamine, n-butylamine, benzylamine, and
pyrrolidine, failed to react with aziridine at room tem-
perature for 1 d in the presence of a catalytic amount of
copper or tin triflate. Although we do not have any proof
for the mechanism, we feel that it is ionic in nature. It
was assumed that a loose complex of an aromatic amine
and the catalyst coordinated with the N of an aziridine
and initiated the opening reaction. Aliphatic amines by
virtue of their higher basicity made stronger complexes
to the copper and tin triflate which failed to activate the
aziridine. This was deduced from an observation that
aniline failed to open N-phenylcyclohexeneimine in the
presence of benzylamine and copper or tin triflate under
the above conditions. Irrespective of the mechanism, the
cleavage of aziridine with aromatic amines in the pres-
ence of tin or copper triflate is unique and unprecedented.
A variety of chiral nonracemic ligands can be complexed
with copper or tin triflate for asymmetric version of the
reaction which is in progress in our laboratory.
tr a n s-N-P h en yl-N′-(2-h ydr oxyph en yl)-1,2-cycloh exan edi-
a m in e (1d ). Semisolid; Rf 0.66 (1:5, EtOAc in petroleum ether);
1
IR (KBr) 3510, 3360, 3280 cm-1; H NMR (CDCl3, 300 MHz) δ
1.25 (m, 4H), 1.68 (m, 2H), 2.21 (m, 2H), 2.93 (m,1H), 3.20 (dt,
J ) 9.9, 3.9 Hz, 1H), 4.40 (bs, 2H, NH), 6.80 (m, 6H), 7.20 (m,
3H); 13C NMR (CDCl3, 75 MHz) δ 24.9, 25.0, 32.5, 32.7, 58.5,
60.6, 114.7 118.8, 120.5, 121.7, 129.6, 135.4, 147.0, 147.5; LCMS
(APCI, m/z) 283 (M+ + 1). Anal. Calcd for C18H22N2O: C, 76.60;
H, 7.80; N, 9.93. Found: C, 76.62; H, 7.90; N, 9.84.
tr a n s-N-P h en yl-N′-(o-m eth ylp h en yl)-1,2-cycloh exa n ed i-
a m in e (1e). Mp 70-71 °C; Rf 0.42 (2% EtOAc in petroleum
1
ether); IR (KBr) 3390 cm-1; H NMR (CDCl3, 300 MHz) δ 1.30
(m, 2H), 1.50 (m, 2H), 1.82 (m, 2H), 2.05 (s, 3H), 2.41 (m, 2H),
3.28 (ddd, J ) 9.6, 9.6, 3.6 Hz, 1H), 3.37 (ddd, J ) 9.9, 9.9, 3.9
Hz, 1H), 3.93 (bs, 2H, NH), 6.71 (m, 5H), 7.1 (d, J ) 7.5 Hz,
1H), 7.23 (m, 3H); 13C NMR (CDCl3, 75 MHz) δ 17.5, 24.6, 24.7,
32.6, 32.7, 57.3, 57.7, 110.2, 113.7, 117.1, 117.7, 122.9, 127.0,
129.3, 130.3, 145.6, 147.5; LCMS (APCI, m/z) 281 (M+ + 1). Anal.
Calcd for C19H24N2: C, 81.43; H, 8.57; N, 10.00. Found: C, 81.46;
H, 8.70; N, 9.88.
tr a n s-N-P h en yl-N′-(m -br om op h en yl)-1,2-cycloh exa n ed i-
a m in e (1f). Semisolid; Rf 0.39 (2% EtOAc in petroleum ether);
IR (KBr) 3390 cm-1; 1H NMR (CDCl3, 300 MHz) δ 1.22 (m, 2H),
1.45 (m, 2H), 1.81 (m, 2H), 2.38 (m, 2H), 3.19 (m, 2H), 3.82 (bs,
2H, NH), 6.52 (m, 1H), 6.65 (d, J ) 8.5 Hz, 2H), 6.75 (m, 2H),
6.84 (m, 1H), 7.02 (m, 1H), 7.21 (m, 2H); 13C NMR (CDCl3, 75
MHz) δ 24.5, 24.6, 32.3, 32.5, 57.0, 57.2, 112.2, 113.5, 115.7,
117.7, 120.1, 123.3, 129.3, 130.5, 147.5, 149.0; LCMS (APCI, m/z)
345 and 347 (1:1; M+ + 1). Anal. Calcd for C18H21N2Br: C, 62.60;
H, 6.09; N, 8.12. Found: C, 62.58; H, 6.08; N, 8.06.
tr a n s-N-P h en yl-N′-(p-m eth oxyph en yl)-1,2-cycloh exan edi-
a m in e (1g). Colorless gel; Rf 0.3 (2% EtOAc in petroleum ether);
IR (neat) 3365 cm-1; 1H NMR (CDCl3, 300 MHz) δ 1.22 (m, 2H),
1.42 (m, 2H), 1.78 (m, 2H), 2.34 (m, 2H), 3.11 (ddd, J ) 9.6, 9.6,
3.3 Hz, 1H), 3.20 (ddd, J ) 9.6, 9.6, 3.3 Hz, 1H), 3.70 (bs, 2H,
NH), 3.76 (s, 3H), 6.63 (m, 4H), 6.71 (m, 1H), 6.79 (m, 2H), 7.19
(m, 2H); 13C NMR (CDCl3, 75 MHz) δ 24.6, 32.6, 55.8, 57.4, 58.4,
113.6, 115.0, 115.3, 117.6, 129.3, 141.8, 147.8, 152.4; LCMS
(APCI, m/z) 297 (M+ + 1). Anal. Calcd for C19H24N2O: C, 77.03;
H, 8.12; N, 9.46. Found: C, 76.78; H, 8.12; N, 9.40.
Exp er im en ta l Section 9
Gen er a l P r oced u r e for Azir id in e Op en in g w ith Ar o-
m a tic Am in es. A solution of an aziridine (1 mmol) and an
aromatic amine (1.2 mmol) in anhydrous ether or CH2Cl2 (5 mL)
was treated with 5 mol % of Cu(OTf)2 or Sn(OTf)2 for the
appropriate period of time (see Table 1) at room temperature.
The solvent was removed on a rotary evaporator, and the crude
product was purified over silica gel by column chromatography
to provide pure trans diamine in high yield.
tr a n s-N,N′-Dip h en yl-1,2-cycloh exa n ed ia m in e (1a ). Col-
orless gel; Rf 0.4 (2% EtOAc in petroleum ether); IR (neat) 3390
t r a n s-N -P h e n y l-N ′-(â-n a p h t h y l)-1,2-c y c lo h e x a n e d i-
a m in e (1h ). Semisolid; Rf 0.42 (2% EtOAc in petroleum ether);
1
cm-1; H NMR (CDCl3, 300 MHz) δ 1.23 (m, 2H), 1.42 (m, 2H),
1
IR (KBr) 3380 cm-1; H NMR (CDCl3, 300 MHz) δ 1.3 (m, 2H),
1.8 (m, 2H), 2.39 (m, 2H), 3.24 (m, 2H), 3.92 (bs, 2H, NH), 6.62
(d, J ) 7 Hz, 4H), 6.75 (t, J ) 7 Hz, 2H), 7.21 (dd, J ) 7 Hz,
4H); 13C NMR (CDCl3, 75 MHz) δ 24.6, 32.5, 57.2, 113.47, 117.54,
129.3, 147.7; LCMS (APCI, m/z) 267 (M+ + 1). Anal. Calcd for
C18H22N2: C, 81.20; H, 8.27; N,10.53. Found: C, 81.02; H, 8.38;
N, 10.60.
1.5 (m, 2H), 1.82 (m, 2H), 2.42 (m, 2H), 3.32 (m, 2H), 3.98 (bs,
2H, NH), 6.62 (m, 2H), 6.78 (m, 1H), 6.82 (m, 2H), 7.20 (m, 3H),
7.40 (m, 1H), 7.64 (m, 3H); 13C NMR (CDCl3, 75 MHz) δ 24.57,
24.60, 32.2, 32.5, 57.15, 57.22, 104.8, 113.5, 117.6, 118.5, 122.0,
125.8, 126.4, 127.5, 127.6, 129.0, 129.3, 135.1, 145.3, 147.6;
LCMS (APCI, m/z) 317 (M+ + 1). Anal. Calcd for C22H24N2: C,
83.54; H, 7.59; N, 8.86. Found: C, 83.38; H, 7.58; N, 8.96.
t r a n s-N -P h e n y l-N ′-(r-n a p h t h y l)-1,2-c yc lo h e xa n e d i-
a m in e (1i). Semisolid; Rf 0.45 (2% EtOAc in petroleum ether);
IR (KBr) 3390 cm-1; 1H NMR (CDCl3, 60 MHz) δ 0.90-1.90 (m,
6H), 2.33 (m, 2H), 3.33 (m, 2H), 3.80 (bs, 2H, NH), 6.5 (m, 4H),
7.2 (m, 8H). Anal. Calcd for C22H24N2: C, 83.54; H, 7.59; N, 8.86.
Found: C, 83.32; H, 7.55.
tr a n s-N-P h en yl-(N′-m eth yl-N′-ph en yl)-1,2-cycloh exan edi-
a m in e (1b). Viscous liquid; Rf 0.5 (2% EtOAc in petroleum
ether); IR (neat) 3400 cm-1; 1H NMR (CDCl3, 300 MHz) δ 1.2-
1.6 (bm, 4H), 1.82 (m, 3H), 2.42 (m, 1H), 2.66 (s, 3H), 3.31 (ddd,
J ) 10.2, 10.2, 3.6 Hz, 1H), 3.64 (m, 1H), 4.0 (bs, NH, 1H), 6.58
(m, 2H), 6.7 (m, 1H), 6.78 (m, 1H), 6.84 (m, 2H), 7.15 (m, 2H),
7.27 (m, 2H); 13C NMR (CDCl3, 75 MHz) δ 24.6, 25.7, 27.8, 30.7,
33.5, 55.2, 62.9, 113.2, 114.0, 117.2, 117.3, 129.18, 129.24, 147.8,
150.8; LCMS (APCI, m/z) 281 (M+ + 1). Anal. Calcd for
t r a n s-N -P h e n yl-N ,N ′-(d ip h e n yl)-1,2-c yc loh e xa n e d i-
a m in e (1j). Mp 106-107 °C; Rf 0.6 (2% EtOAc in petroleum
ether); IR (KBr) 3405 cm-1; 1H NMR (CCl4, 60 MHz) δ 0.95-1.9
(m, 6H), 2.25 (m, 2H), 3.0 (m, 1H), 3.9 (m, 1H), 4.15 (bs, 1H,
NH), 6.8-7.7 (m, 15H).
C
19H24N2: C, 81.42; H, 8.57; N, 10.00. Found: C, 81.28; H, 8.68;
N, 10.14.
tr a n s-N-P h en yl-N′-(p -n it r op h en yl)-1,2-cycloh exa n ed i-
a m in e (1c). Yellow solid; mp 145 °C; Rf 0.8 (1:3, EtOAc in
petroleum ether); IR (KBr) 3350 cm-1 1H NMR (CDCl3, 300
tr a n s-N-P h en yl-[N′-(2,5-d iisop r op ylp h en yl)-1,2-cyclo-
h exa n ed ia m in e (1k ). Viscous liquid; Rf 0.45 (2% EtOAc in
;
MHz) δ 1.22-1.6 (bm, 4H), 1.80 (m, 2H), 2.30 (m, 2H), 3.28 (m,
1
petroleum ether); IR (neat) 3360, 3400 cm-1; H NMR (CDCl3,
60 MHz) δ 1.15 (d, J ) 5.5 Hz, 6H), 1.25 (d, J ) 5.5 Hz, 6H),
1.3-2.4 (m, 8H), 2.93-3.2 (m, 4H), 3.27 (q, J ) 7 Hz, 2H), 6.75
(m, 2H), 7.0-7.4 (m, 6H). Anal. Calcd for C24H34N2: C, 82.29;
H, 9.71; N, 8.00. Found: C, 82.00; H, 9.58; N, 8.38.
(8) This was ascertained by comparing the δ value of N-Me in
products obtained from the opening of styrene oxide with N-methyl
aniline. For reference, see: Chini, M.; Crotti, P.; Macchia, F. J . Org.
Chem. 1991, 56, 5939.
(9) (a) For general methods, see: Sekar, G.; DattaGupta, A.; Singh,
V. K. J . Org. Chem. 1998, 63, 2961. (b) Silica gel coated TLC plates
were used.
2-N-(tr a n s-2′-Am in op h en yl Cycloh exyl)-5-Ch lor o P yr i-
d in e (1l). Mp 89-90 °C; Rf 0.62 (1:10, EtOAc in petroleum
1
ether); IR (KBr) 3400 cm-1; H NMR (CDCl3, 300 MHz) δ 1.25