I. Shiina, K. Nakata / Tetrahedron Letters 48 (2007) 8314–8317
8317
Y.; Akakura, M.; Ishihara, K. Tetrahedron 2007, 63, 6191;
(n) Kawabata, T.; Stragies, R.; Fukaya, T.; Nagaoka, Y.;
Schedel, H.; Fuji, K. Tetrahedron Lett. 2003, 44, 1545.
3. (a) Shiina, I.; Ibuka, R.; Kubota, M. Chem. Lett. 2002, 286;
(b) Shiina, I.; Kubota, M.; Ibuka, R. Tetrahedron Lett.
2002, 43, 7535; (c) Shiina, I.; Kubota, M.; Oshiumi, H.;
Hashizume, M. J. Org. Chem. 2004, 69, 1822; (d) Shiina, I.;
Oshiumi, H.; Hashizume, M.; Yamai, Y.; Ibuka, R.
Tetrahedron Lett. 2004, 45, 543; (e) Shiina, I.; Hashizume,
M.; Yamai, Y.; Oshiumi, H.; Shimazaki, T.; Takasuna, Y.;
Ibuka, R. Chem. Eur. J. 2005, 11, 6601; (f) Shiina, I.;
Hashizume, M. Tetrahedron 2006, 62, 7934; (g) Shiina, I.;
Kikuchi, T.; Sasaki, A. Org. Lett. 2006, 8, 4955; (h) Shiina,
I.; Takasuna, Y.; Suzuki, R.; Oshiumi, H.; Komiyama, Y.;
Hitomi, S.; Fukui, H. Org. Lett. 2006, 8, 5279; (i) Shiina, I.
Chem. Rev. 2007, 107, 239.
4. (a) Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.;
Kilbane, C. J. J. Am. Chem. Soc. 2004, 126, 12226; (b)
Birman, V. B.; Jiang, H. Org. Lett. 2005, 7, 3445; (c)
Birman, V. B.; Li, X. Org. Lett. 2006, 8, 1351; (d) Birman,
V. B.; Guo, L. Org. Lett. 2006, 8, 4859; (e) Birman, V. B.;
Li, X.; Jiang, H.; Uffman, E. W. Tetrahedron 2006, 62, 285;
(f) Birman, V. B.; Jiang, H.; Li, X.; Guo, L.; Uffman, E. W.
J. Am. Chem. Soc. 2006, 128, 6536; (g) Birman, V. B.; Li,
X.; Han, Z. Org. Lett. 2007, 9, 37; See also (h) Kobayashi,
M.; Okamoto, S. Tetrahedron Lett. 2006, 47, 4347.
carboxylic acids coupled with benzoic anhydride and
tetramisole derivatives. We found that the reaction using
4-methoxybenzoic anhydride (PMBA) produced the
corresponding esters in high ee under mild conditions,
whereas the resulting optically active alcohols were
obtained with high selectivity when non-substituted ben-
zoic anhydride was used as a coupling reagent. This
protocol produces chiral carboxylic esters directly from
free carboxylic acids and racemic secondary alcohols by
using the trans-acylation process to generate mixed
anhydrides from acid components coupled with benzoic
anhydride derivatives under the influence of chiral cata-
lysts. Further studies on the reaction using benzoic
anhydrides, as well as other applications of this protocol
to the synthesis of optically active compounds, are now
in progress.
Acknowledgements
This study was partially supported by a Research Grant
from the Center for Green Photo-Science and Technol-
ogy, and Grants-in-Aid for Scientific Research from the
Ministry of Education, Science, Sports and Culture,
Japan.
5. For the systematic studies on the substituent effects of the
aromatic ring of benzoic anhydrides, see Ref. 3c.
6. The s-values were determined according to the litera-
ture method:2a,4c s = ln((1 ꢀ CHPLC)(1 ꢀ eeA))/ln((1 ꢀ
CHPLC)(1 + eeA)). The conversion CHPLC used in the above
equation was calculated as CHPLC = eeA/(eeE + eeA), where
eeE is the enantiomeric excess of ester and eeA is the
enantiomeric excess of unreacted alcohol. The conversion
values thus obtained were generally within 1–2% of the
values obtained by 1H NMR integration of the crude
reaction mixture.
7. The BTM-catalyzed reaction of ( )-1 with benzoic anhy-
dride in the absence of 3-phenylpropionic acid produced the
corresponding benzoate in 3% yield with 11% ee, accom-
panied by 97% recovery of the unreacted alcohol (1.5% ee),
as shown by Birman and Li4c The sense of the optical
rotation of the recovered alcohol is opposite to that of 1
produced in Table 2; therefore, the ee of (S)-1 in entry 1 was
somewhat reduced (ca. 3–4%) by this effect.
8. The BTM-catalyzed reaction of ( )-1 with PMBA in the
absence of 3-phenylpropionic acid produced the corre-
sponding 4-methoxybenzoate in 3% yield with 4.4% ee,
accompanied by 80% recovery of the unreacted alcohol
(1.5% ee). The sense of the optical rotation of the recovered
alcohol is opposite to that of 1 produced in Table 2;
therefore, the ee of (S)-1 in entry 4 was somewhat reduced
(ca. 3–4%) by this effect.
References and notes
1. For reviews, see: (a) Kagan, H. B.; Fiaud, J. C. Top.
Stereochem. 1978, 10, 175; (b) Noyori, R. Asymmetric
Catalysis in Organic Synthesis; John Wiley & Sons: New
York, 1994; (c) Mahrwald, R. Modern Aldol Reactions;
Wiley-VCH: Weinheim, 2004.
2. For reviews, see: (a) Kagan, H. B.; Fiaud, J. C. Top.
Stereochem. 1988, 18, 249; (b) Sano, T.; Oriyama, T. J.
Synth. Org. Chem. Jpn. 1999, 57, 598; (c) Terakado, D.;
Oriyama, T. Org. Synth. 2006, 83, 70; (d) Fu, G. C. Acc.
Chem. Res. 2000, 33, 412; (e) Fu, G. C. Acc. Chem. Res.
2004, 37, 542; (f) France, S.; Guerin, D. J.; Miller, S. J.;
Lectka, T. Chem. Rev. 2003, 103, 2985; (g) Miller, S. J. Acc.
Chem. Res. 2004, 37, 601; (h) Jarvo, E. R.; Miller, S. J.
Asymmetric Acylation. In Comprehensive Asymmetric
Catalysis, Supplement 1; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer-Verlag: Berlin, Heidelberg,
2004, Chapter 43; (i) Spivey, A. C.; Leese, D. P.; Zhu, F.;
Davey, S. G.; Jarvest, R. L. Tetrahedron 2004, 60, 4513; (j)
Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43,
5138; (k) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005,
44, 3974; (l) Ishihara, K.; Sakakura, A.; Hatano, M. Synlett
2007, 686, and references cited therein; See also (m) Kosugi,