8
of 9
XIE ET AL.
(
1
151 MHz, chloroform-d, δ, ppm): 157.28, 149.20, 136.62,
36.49, 129.99, 126.84, 123.16, 122.09, 39.76.
[14] T. Lazarides, I. V. Sazanovich, A. J. Simaan, M. C. Kafentzi,
M. Delor, Y. Mekmouche, B. Faure, M. Reglier,
J. A. Weinstein, A. G. Coutsolelos, T. Tron, J. Am. Chem. Soc.
2013, 135, 3095.
[
15] E. Deponti, A. Luisa, M. Natali, E. Iengo, F. Scandola, Dalton
4
.2 | Synthesis of cobalt complex [(bptb)
Trans. 2014, 43, 16345.
CoCl2]
[16] L.-Z. Tang, C.-N. Lin, Y.-X. Zhang, S.-Z. Zhan, Int. J. Hydrogen
Energy 2016, 41, 14676.
A methanol solution (10 ml) of CoCl ꢁ6H O (0.12 g,
[17] Q.-X. Peng, D. Xue, L.-F. Yang, S.-Z. Zhan, Int. J. Hydrogen
Energy 2017, 42, 16428.
2
2
0
0
.5 mmol) was added to a solution of ligand bptb (0.16 g,
.5 mmol) in 10 ml of ethanol and the mixture was
[
18] F. Gärtner, A. Boddien, E. Barsch, K. Fumino, S. Losse,
H. Junge, D. Hollmann, A. Brückner, R. Ludwig, M. Beller,
Chem. Eur. J. 2011, 17, 6425.
stirred for 10 min. After several days, pink needle-shaped
crystals were obtained in 71% yield (0.20 g). Elemental
analysis: calcd for C H C CoN S (%): C, 47.59; H,
[19] B. Probst, C. Kolano, P. Hamm, R. Alberto, Inorg. Chem. 2009,
18
16 l2
2 2
48, 1836.
3
.55; N, 6.17; found (%): C, 47.51; H, 3.56; N, 6.19. ESI-
[
20] W. T. Eckenhoff, R. Eisenberg, Dalton Trans. 2012, 41, 13004.
+
MS (methanol): m/z = 417.98 (M − Cl) .
[21] W. T. Eckenhoff, W. W. Brennessel, R. Eisenberg, Inorg. Chem.
014, 53, 9860.
2
[
[
[
[
22] L.-Z. Fu, L.-L. Zhou, Q.-N. Liang, C. Fang, S.-Z. Zhan, Polyhe-
dron 2016, 107, 83.
23] N. Bao, L. Shen, T. Takata, K. Domen, Chem. Mater. 2008,
ACKNOWLEDGMENTS
This work was supported by the National Science Foun-
dation of China (nos. 21271073 and 21875074) and the
Student Research Program (SRP) of South China Univer-
sity of Technology.
20, 110.
24] H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li,
J. Catal. 2009, 266, 165.
25] K. Wu, Y. Du, H. Tang, Z. Chen, T. Lian, J. Am. Chem. Soc.
2015, 137, 10224.
ORCID
[26] M. B. Wilker, K. E. Shinopoulos, K. A. Brown,
D. W. Mulder, P. W. King, G. Dukovic, J. Am. Chem. Soc.
2014, 136, 4316.
[
27] J. Chen, X.-J. Wu, L. Yin, B. Li, X. Hong, Z. Fan, B. Chen,
REFERENCES
C. Xue, H. Zhang, Angew. Chem. 2015, 127, 1226.
[
1] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher,
[
[
[
28] R. Marschall, Adv. Funct. Mater. 2014, 24, 2421.
Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110,
29] X. X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148.
30] X.-L. Yin, L.-L. Li, W.-J. Jiang, Y. Zhang, X. Zhang, L.-J. Wan,
J.-S. Hu, ACS Appl. Mater. Interfaces 2016, 8, 15258.
6
446.
[
[
2] A. J. Esswein, D. G. Nocera, Chem. Rev. 2007, 107, 4022.
3] T. Faunce, S. Styring, M. R. Wasielewski, G. W. Brudvig,
A. W. Rutherford, J. Messinger, A. F. Lee, C. L. Hill,
H. deGroot, M. Fontecave, D. R. MacFarlane, B. Hankamer,
D. G. Nocera, D. M. Tiede, H. Dau, W. Hillier, L. Wang,
R. Amal, Energy Environ. Sci. 2013, 6, 1074.
[
[
[
[
[
[
[
[
[
[
[
[
31] H. Chen, Z. Sun, S. Ye, D. Lu, P. Du, J. Mater. Chem. A 2015,
3
, 15729.
32] Y. Xu, X. Yin, Y. Huang, P. Du, B. Zhang, Chem. Eur. J. 2015,
1, 4571.
33] K. A. Brown, M. B. Wilker, M. Boehm, G. Dukovic,
P. W. King, J. Am. Chem. Soc. 2012, 134, 5627.
34] D. Yue, X. Qian, M. Kan, M. Ren, Y. Zhu, L. Jiang, Y. Zhao,
Appl. Catal. B 2017, 209, 155.
35] Q. X. Peng, D. Xue, S. Z. Zhan, X. F. Jiang, Catal. Commun.
018, 103, 15.
36] Q.-X. Peng, D. Xue, S.-Z. Zhan, C.-L. Ni, Appl. Catal. B 2017,
19, 353.
37] A. J. Clough, J. W. Yoo, M. H. Mecklenburg, S. C. Marinescu,
J. Am. Chem. Soc. 2015, 137, 118.
2
[
[
4] J. H. Alstrum-Acevedo, M. K. Brennaman, T. J. Meyer, Inorg.
Chem. 2005, 44, 6802.
5] X. J. Lv, W. F. Fu, H. X. Chang, H. Zhang, J. S. Cheng,
G. J. Zhang, Y. Song, C. Y. Hu, J. H. Li, J. Mater. Chem. 2012,
2
2, 1539.
2
[
[
[
6] A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141.
7] J. Barber, Chem. Soc. Rev. 2009, 38, 185.
8] W. Zhang, J. Hong, J. Zheng, Z. Huang, J. Zhou, R. Xu, J. Am.
Chem. Soc. 2011, 133, 20680.
2
[
9] J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet,
Chem. Rev. 2007, 107, 4273.
38] J. M. Lei, S. P. Luo, S. Z. Zhan, Int. J. Hydrogen Energy 2018,
4
3, 19047.
39] J. M. Lei, S. P. Luo, S. Z. Zhan, J. Photochem. Photobiol. A
018, 364, 650.
40] J. S. Jang, U. A. Joshi, J. S. Lee, J. Phys. Chem. C 2007, 111,
3280.
41] L. C. Song, X. J. Sun, P. H. Zhao, J. P. Li, H. B. Song, Dalton
Trans. 2012, 41, 8941.
42] Z. Q. Wang, L. Z. Tang, Y. X. Zhang, S. Z. Zhan, J. S. Ye,
J. Power Sources 2015, 287, 50.
[
[
10] P. M. Vignais, B. Billoud, Chem. Rev. 2007, 107, 4206.
11] M. P. McLaughlin, T. M. McCormick, R. Eisenberg,
P. L. Holland, Chem. Commun. 2011, 47, 7989.
2
[
12] L. Gan, T. L. Groy, P. Tarakeshwar, S. K. S. Mazinani,
J. Shearer, V. Mujica, A. K. Jones, J. Am. Chem. Soc. 2015, 137,
1
1
109.
[
13] A. Das, Z. Han, W. W. Brennessel, P. L. Holland, R. Eisenberg,
ACS Catal. 2015, 5, 1397.