Page 7 of 8
Green Chemistry
Please do not adjust margins
Journal Name
ARTICLE
of polycarbonates: (d) Y. Qin and X. Wang, Biotechnol. J., 2010,
, 1164.
M. Mikkelsen, M. Jørgensen and F. C. Krebs, Energy Environ.
Sci., 2010, , 43.
For metal catalysts: (a) X.-B. Lu, Y.-J. Zhang, B. Liang, X. Li 18 (a) S. E. Denmark and G. L. Beutner, Angew. Chem. Int. Ed.,
Chem. Sci., 2012, 3, 2094.
17 When the same reaction was performedDaOtI:1100.a10tm39/oCf7GCCO0214w5i8tAh
5
6
7
0.1 mol% of 3g
/4d, 58% conversion could be obtained in only 48
3
h, which further demonstrated the scalability of the reaction.
and H. Wang, J. Mol. Catal. A-Chem., 2004, 210, 31; (b) M.
2008, 47, 1560; (b) G. L. Beutner and S. E. Denmark, Angew.
North and R. Pasquale, Angew. Chem. Int. Ed., 2009, 48, 2946; (c)
Chem. Int. Ed., 2013, 52, 9086.
M. North and C. Young, Catal. Sci. Technol., 2011,
North, S. C. Z. Quek, N. E. Pridmore, A. C. Whitwood and X.
Wu, ACS Catal., 2015, , 3398; (e) J. A. Castro-Osma, C. 20 N. D. Harrold, Y. Li and M. H. Chisholm, Macromolecules, 2013,
Alonso-Moreno, A. Lara-Sánchez, J. Martínez, M. North and A. 46, 692.
Otero, Catal. Sci. Technol., 2014, , 1674; (f) J. A. Castro-Osma, 21 W.-M. Ren, Y. Liu and X.-B. Lu, J. Org. Chem., 2014, 79, 9771.
M. North and X. Wu, Chem.-Eur. J., 2016, 22, 2100; (g) J. A. 22 a) M. M. Kayser and K. L. Hatt, Can. J. Chem., 1991, 69, 1929;
1
, 93; (d) M. 19 V. Gutmann, The Donor-Acceptor Approach to Molecular
Interactions; Plenum Press, New York, 1978, chap. 1.
5
4
Castro-Osma, K. J. Lamb and M. North, ACS Catal., 2016,
6
,
(b) P. A. Byrne, K. Karaghiosoff and H. Mayr, J. Am. Chem. Soc.,
2016, 138, 11272; (c) L. R. Falvello, S. Fernández, R. Navarro, I.
Pascual and E. P. Urriolabeitia, J. Chem. Soc. Dalton Trans.,
1997, 763.
5012-; (h) A. Buchard, M. R. Kember, K. G. Sandeman and C. K.
Williams, Chem. Commun., 2011, 47, 212; (i) Y. Yang, Y.
Hayashi, Y. Fujii, T. Nagano, Y. Kita, T. Ohshima, J. Okuda and
K. Mashima, Catal. Sci. Technol., 2012,
S. Shimada, Chem. Commun., 2009, 1136; (k) H. V. Babu and K.
Muralidharan, Dalton Trans., 2013, 42, 1238; (l) B. Barkakaty, K. 24 Mechanistic study for the coordination of phosphorane 4b to
2
, 509; (j) S.-F. Yin and 23 J. A. Castro-Osma, M. North, W. K. Offermans, W. Leitner
and T. E. Müller, ChemSusChem, 2016, , 791.
9
Morino, A. Sudo and T. Endo, Green Chem., 2010, 12, 42; (m) I.
Shibata, I. Mitani, A. Imakuni and A. Baba, Tetrahedron Lett.,
2011, 52, 721; (n) A. Monassier, V. D’Elia, M. Cokoja, H. Dong,
3g was also performed, however, apart from electrical
conductivity study, we tried in vain to get more information
for their interaction, for detail see section 3-1 of SI.
̈
J. D. A. Pelletier, J.-M. Basset and F. E. Kuhn, ChemCatChem, 25 (a) P. Tascedda and E. Duñach, Chem. Commun., 2000, 449; (b)
2013, , 1321. H. Kawanami and Y. Ikushima, Tetrahedron Lett., 2002, 43
For Organic catalysts: (a) H. Zhou, G.-X. Wang, W.-Z. Zhang
and X.-B. Lu, ACS Catal., 2015, , 6773; (b) L. Wang, G. Y.
Zhang, K. Kodama and T. Hirose, Green Chem., 2016, 18, 1229;
(c) N. Aoyagi, Y. Furusho and T. Endo, Tetrahedron Lett., 2013
54 7031. Du, Y. Wu, A.-H. Liu and L.-N. He, J. Org. Chem., 2008, 73,
5
,
8
9
3841; (c) A. Sudo, Y. Morioka, E. Koizumi, F. Sanda and T.
Endo, Tetrahedron Lett., 2003, 44, 7889; (d) M. T. Hancock and
A. R. Pinhas, Tetrahedron Lett., 2003, 44, 5457; (e) Y.-M. Shen,
W.-L. Duan and M. Shi, Eur. J. Org. Chem., 2004, 3080; (f) Y.
5
,
,
For other examples at mospheric pressure or room temperature:
4709; (g) C. Phung, R. M. Ulrich, M. Ibrahim, N. T. G. Tighe, D.
(a) X.-B. Lu, B. Liang, Y.-J. Zhang, Y.-Z. Tian, Y. M. Wang, C.-
L. Lieberman and A. R. Pinhas, Green Chem., 2011, 13, 3224; (h)
X. Bai, H. Wang and R. Zhang, J. Am. Chem. Soc., 2004, 126
3732; (b) X.-B. Lu and Y. Wang, Angew. Chem. Int. Ed., 2004,
43, 3574; (c) A. Decortes, M. M. Belmonte, J. Benet-Buchholz
,
T. Y. Ma and S. Z. Qiao, ACS Catal., 2014,
D. B. Shinde, R. Banerjee and B. M. Bhanage, Catal. Sci.
Technol., 2016, , 6152.
4, 3847; (i) V. Saptal,
6
and A. W. Kleij, Chem. Commun., 2010, 46, 4580; (d) A. 26 S. Stanković, M. D’hooghe, S. Catak, H. Eum, M. Waroquier, V.
Decortes and A. W. Kleij, ChemCatChem, 2011,
3
, 831; (e) A.
V. Speybroeck, N. D. Kimpe and H.-J. Ha, Chem. Soc. Rev.,
Berkessel and M. Brandenburg, Org. Lett., 2006,
8, 4401; (f) R.
2012, 41, 643.
Ma, L.-N. He and Y.-B. Zhou, Green Chem., 2016, 18, 226;
27 (a) A. W. Miller and S. T. Nguyen, Org. Lett., 2004,
D. Adhikari, A. W. Miller, M.-H. Baik and S. T. Nguyen, Chem.
Sci., 2015, , 1293; (c) Z.-Z. Yang, L.-N. He, S.-Y. Peng and A.-
6, 2301; (b)
10 (a) M. S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc., 1998,
120, 5315; (b) T. P. Yoon and E. N. Jacobsen, Science, 2003, 299
1691.
11 (a) X.-P. Zeng, Z.-Y. Cao, X. Wang, L. Chen, F. Zhou, F. Zhu,
C.-H. Wang and J. Zhou, J. Am. Chem. Soc., 2016, 138, 416; (b)
X.-P. Zeng and J. Zhou, J. Am. Chem. Soc., 2016, 138, 8730; (c)
X. Ye, X.-P. Zeng and J. Zhou, Acta Chim. Sinica, 2016, 74, 984.
12 For review of Lewis base catalysis, see: (a) S. E. Denmark and G.
,
6
H. Liu, Green Chem., 2010, 12, 1850; (d) Z.-Z. Yang, Y.-N. Li,
Y.-Y. Wei and L.-N. He, Green Chem., 2011, 13, 2351; (e) A.-H.
Liu, R. Ma, C. Song, Z.-Z. Yang, A. Yu, Y. Cai, L.-N. He, Y. N.
Zhao, B. Yu and Q.-W. Song, Angew. Chem. Int. Ed., 2012, 51
,
11306; (f) X.-Z. Lin, Z.-Z. Yang, L.-N. He and Z.-Y. Yuan,
Green Chem., 2015, 17, 795; (g) H. Zhou, Y.-M. Wang, W.-Z.
Zhang, J.-P. Qu and X.-B. Lu, Green Chem., 2011, 13, 644; (h) F.
Fontana, C. C. Chen and V. K. Aggarwal, Org. Lett., 2011, 13,
34547; And ref 8a.
L. Beutner, Angew. Chem
Beutner and S. E. Denmark, Angew. Chem. Int. Ed., 2013, 52
9086; For selected recent examples: (c) S. E. Denmark and A.
. Int. Ed., 2008, 47, 1560; (b) G. L.
,
Jaunet, J. Am. Chem. Soc., 2013, 135, 6419; (d) S. E. Denmark 28 We found that phosphorane-(salen)CoI catalyst 3g/4d catalyzed
o
and H. M. Chi, J. Am. Chem. Soc., 2014, 136, 8915; (e) S. E.
Denmark, E. Hartmann, D. J. P. Kornfilt and H. Wang, Nat.
Chem., 2014, 6, 1056.
the coupling of epoxide 1m with CO2 inefficiently at 25 C,
with 10 atm of CO2, but no better results were obtained at
elevated temperature, possibly due to the instability of salen
Co(III) complexes at elevated temperature, as pointed out by Lu
and co-workers (ref 16c).
13 W. Clegg, R. W. Harrington, M. North and R. Pasquale, Chem.-
Eur. J., 2010, 16, 6828.
14 The nucleophility and leaving ability of the anion has great
influence on the reaction. For example: (a) X.-B. Lu, X.-J. Feng,
R. He, Appl. Catal. A-Gen., 2002, 234, 25; (b) X.-B. Lu, Y.-J.
Zhang, K. Jin, L.-M. Luo and H. Wang, J. Catal., 2004, 227, 537.
15 A comparative study at the early stage of reaction was also
performed: 3g/4d (1.0 mol%), 3 h, 37% conversion, 37% yield;
(salenAl)2O/Bu4NBr (1.0 mol%), 3 h, 38% conversion (ref 13).
16 For review: (a) X.-B. Lu and D. J. Darensbourg, Chem. Soc. Rev.,
2012, 41, 1462; For example: (b) C. T. Cohen, T. Chu and G. W.
Coates, J. Am. Chem. Soc., 2005, 127, 10869; (c) X.-B. Lu, L.
Shi, Y.-M Wang, R. Zhang, Y.-J. Zhang, X.-J. Peng, Z.-C. Zhang
and B. Li, J. Am. Chem. Soc., 2006, 128, 1664; (d) W.-M. Ren,
G.-P. Wu, F. Lin, J.-Y. Jiang, C. Liu, Y. Luo and X.-cB. Lu,
29 A preliminary attempt revealed that using CH2Cl2 as solvent,
chiral cyclic carbonate 2a could be obtained in 23% ee with 10%
conversion over 15 hours, for the 1 mol% of 3g/4d catalyzed
coupling of 1a with CO2, which demonstrated the feasibility of
the corresponding kinetic resolution reaction.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins