Journal of the American Chemical Society
Page 4 of 5
One potential issue of our design is the hydrolytic stability of
boronic ester linkages. To test for this, we immersed our
crosslinked samples in water overnight and then monitored any
change of mass and mechanical properties. The mass change was
negligible for samples before and after water submersion,
indicating no appreciable transesterification and dissolution of the
resulting small molecules (Table S2). Importantly mechanical
properties of the samples after submersion in water over night
remained unchanged (Fig. S5), further confirming the hydrolytic
stability of boronic ester embedded in our polymer system.
Despite the fact that small molecule boronic esters are susceptible
(5) Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du
Prez, F. E. Adv. Funct. Mater. 2015, 25, 2451–2457.
6) Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W.
Adv. Mater. 2014, 26, 3938–3942.
7) Ghosh, B.; Urban, M. W. Science 2009, 323, 1458–1460.
(8) Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran,
K.; Wudl, F. Science 2002, 295, 1698–1702.
(9) Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Adv.
Mater. 2012, 24, 3975–3980.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
(
(10) Lu, Y.-X.; Guan, Z. J. Am. Chem. Soc. 2012, 134, 14226–14231.
(11) Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.;
Otsuka, H. Angew. Chem. Int. Ed. 2012, 51, 1138–1142.
2
2
(12) Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Nature
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
to hydrolysis, the relatively hydrophobic local environment of
our bulk polymer can prohibit the uptake of water into the
crosslinked network, effectively shielding the boronic esters from
hydrolysis. A similar observation was made for a different bulk
2
008, 451, 977–980.
(13) Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. Nat. Chem.
2012, 4, 467–472.
(14) Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. J. Am. Chem.
Soc. 2014, 136, 16128–16131.
33
boronic ester network reported recently.
(15) Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; Seppala, J.;
In conclusion, we have demonstrated that the dynamic boronic
ester linkage can be successfully used to prepare malleable, self-
healing, and reprocessable covalent network polymers. The
dynamic exchange of boronic esters bonds afforded the observed
dynamic properties. Significantly, tuning the rates of trans-
esterification in the crosslinkers varied the malleability and the
efficiency of self-healing, demonstrating a direct link between
small molecule kinetics and rate of self-healing. This work shows
the possibility of bottom-up rational design of dynamic materials
with tunable dynamic properties through simple perturbations of
small molecule structure and kinetics, which may give rise to
materials with a variety of applications, ranging from robust self-
healing elastomers to processable thermosets.
Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I. W.; Rowan, S.
J. J. Am. Chem. Soc. 2010, 132, 12051–12058.
(16) Yount, W. C.; Loveless, D. M.; Craig, S. L. J. Am. Chem. Soc. 2005,
1
27, 14488–14496.
(17) Yount, W. C.; Loveless, D. M.; Craig, S. L. Angew. Chem. Int. Ed.
2005, 44, 2746–2748.
(
18) Weng, W.; Beck, J. B.; Jamieson, A. M.; Rowan, S. J. J. Am. Chem.
Soc. 2006, 128, 11663–11672.
19) Giuseppone, N.; Fuks, G.; Lehn, J.-M. Chem. – Eur. J. 2006, 12,
723–1735.
(20) Sui, Z.; King, W. J.; Murphy, W. L. Adv. Funct. Mater. 2008, 18,
824–1831.
21) Ying, H.; Zhang, Y.; Cheng, J. Nat. Commun. 2014, 5, 3218–3227.
(
1
1
(
(22) Hall, D. G. Boronic Acids: Preparation and Applications in Organic
Synthesis, Medicine and Materials; John Wiley & Sons, 2012; Vol. 2.
(
2
(
1
23) Wulff, G.; Lauer, M.; Böhnke, H. Angew. Chem. Int. Ed. Engl. 1984,
3, 741–742.
24) Fujita, N.; Shinkai, S.; James, T. D. Chem. – Asian J. 2008, 3, 1076–
091.
(25) Jäkle, F. Chem. Rev. 2010, 110, 3985–4022.
26) Bapat, A. P.; Roy, D.; Ray, J. G.; Savin, D. A.; Sumerlin, B. S. J. Am.
Chem. Soc. 2011, 133, 19832–19838.
27) Niu, W.; O'Sullivan, C.; Rambo, B. M.; Smith, M. D.; Lavigne, J. J.
ASSOCIATED CONTENT
Supporting Information
All experimental details including sample preparation and
characterization. This material is available free of charge via the
Internet at http://pubs.acs.org.
(
(
Chem. Commun. 2005, 4342–4344.
(28) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew. Chem. Int.
Ed. Engl. 1996, 35, 1910–1922.
AUTHOR INFORMATION
Corresponding Author
(29) Edwards, N. Y.; Sager, T. W.; McDevitt, J. T.; Anslyn, E. V. J. Am.
Chem. Soc. 2007, 129, 13575–13583.
(30) He, L.; Fullenkamp, D. E.; Rivera, J. G.; Messersmith, P. B. Chem.
Commun. 2011, 47, 7497–7497.
(31) Meng, H.; Xiao, P.; Gu, J.; Wen, X.; Xu, J.; Zhao, C.; Zhang, J.;
Chen, T. Chem. Commun. 2014, 50, 12277–12280.
Author Contributions
‡
These authors contributed equally.
(
32) Deng, C. C.; Brooks, W. L.A.; Abboud, K. A.; Sumerlin, B. S. ACS
Macro Lett. 2015, 4, 220.
33) Cash, J. J.; Kubo, T.; Bapat, A. P.; Sumerlin, B. S. Macromolecules
015, 48, 2098–2106.
Notes
The authors declare no competing financial interests.
(
2
ACKNOWLEDGMENT
(34) Claridge, T. D. W. In Tetrahedron Organic Chemistry Series;
Timothy, D. W. C., Ed.; Elsevier: 2009; Vol. Volume 27, p 99.
(35) Claridge, T. D. W. In Tetrahedron Organic Chemistry Series;
Timothy, D. W. C., Ed.; Elsevier: 2009; Vol. Volume 27, p 247.
(36) Collins, B. E.; Metola, P.; Anslyn, E. V. Supramol. Chem. 2013, 25,
79–86.
We acknowledge the financial support of the US Department of
Energy, Division of Materials Sciences (DE-FG02-04ER46162)
(
(
J.C.), and the National Science Foundation (DMR-1217651)
O.C.). We also thank the Materia Inc. for supplying the Grubbs
second-generation metathesis catalyst. We thank Prof. Eric
Anslyn and Brette Chapin (UT Austin) for advice on di-boronic
acid purification.
(37) Zhu, L.; Shabbir, S. H.; Gray, M.; Lynch, V. M.; Sorey, S.; Anslyn, E.
V. J. Am. Chem. Soc. 2006, 128, 1222–1232.
(
38) Lee, S.-H.; Park, Y.; Wee, K.-R.; Son, H.-J.; Cho, D. W.; Pac, C.;
Choi, W.; Kang, S. O. Org. Lett. 2009, 12, 460–463.
39) Ding, X.; Chen, L.; Honsho, Y.; Feng, X.; Saengsawang, O.; Guo, J.;
(
REFERENCES
Saeki, A.; Seki, S.; Irle, S.; Nagase, S.; Parasuk, V.; Jiang, D. J. Am. Chem.
Soc. 2011, 133, 14510–14513.
(
1) Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N.
Macromolecules 2010, 43, 2643–2653.
2) Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Nat. Mater. 2011, 10,
4–27.
3) Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Science 2011,
34, 965–968.
(4) Maeda, T.; Otsuka, H.; Takahara, A. Prog. Polym. Sci. 2009, 34, 581–
04.
(
2
(
40) Southwood, T. J.; Curry, M. C.; Hutton, C. A. Tetrahedron 2006, 62,
36–242.
41) Bielawski, C. W.; Grubbs, R. H. Angew. Chem. Int. Ed. 2000, 39,
2903–2906.
42) Franzen, S.; Ni, W.; Wang, B. J. Phys. Chem. B 2003, 107, 12942–
2948.
(
1
(
3
(
1
6
ACS Paragon Plus Environment