10.1002/anie.202104359
Angewandte Chemie International Edition
RESEARCH ARTICLE
Hu, H. Chen, P.-Q. Huang, Angew. Chem. Int. Ed. 2018, 57, 11354-11358;
Angew. Chem. 2018, 130, 11524-11528; i) D.-H. Chen, W.-T. Sun, C.-J. Zhu,
G.-S. Lu, D.-P. Wu, A.-E Wang, P.-Q. Huang, Angew. Chem. Int. Ed. 2021,
60, 8827-8831; Angew. Chem. 2021, 133, 8909-8913.
Conclusion
In summary, we have developed a direct deoxygenative
arylation of amides using SmI2/Sm mixed system. The reactions
are operationally simple and proceed under mild conditions,
affording a series of biologically important diarylmethylamines in
moderate to good yields. The key to this success is the merging
of ET induced activation of amide with boron 1,2-metalate
rearrangement. The utility of the present methodology was
demonstrated in the late-stage diversification of some marketed
drugs, and in the synthesis of drugs from corresponding amides.
This transformation is an extremely simple way to carry out the
challenging deoxygenative transformation of amides, a long-
standing goal for organic chemists.
[7] a) L. Hie, N. F. Fine Nathel, T. K. Shah, E. L. Baker, X. Hong, Y. Yang, P.
Liu, K. N. Houk, N. K. Garg, Nature 2015, 524, 79-83; b) R. Takise, K. Muto,
J. Yamaguchi, Chem. Soc. Rev. 2017, 46, 5864-5888; c) J. Hu, M. Wang, X.
Pu, Z. Shi, Nat. Commun. 2017, 8, 14993-14999; d) J. E. Dander, N. K. Garg,
ACS Catal. 2017, 7, 1413-1423. e) S. Shi, S. P. Nolan, M. Szostak, Acc.
Chem. Res. 2018, 51, 2589-2599; f) T. Zhou, C.-L. Ji, X. Hong, M. Szostak,
Chem. Sci. 2019, 10, 9865-9871; g) G. Li, S. Ma, M. Szostak, Trends in
Chemistry, 2020, 2, 914-928.
[8] For selected examples, see: a) K.-J. Xiao, J.-M. Luo, K.-Y. Ye, Y. Wang,
P.-Q. Huang, Angew. Chem. Int. Ed. 2010, 49, 3037-3040; Angew. Chem.
2010, 122, 3101-3104; b) L. Xie, D. Dixon, Chem. Sci. 2017, 8, 7492-7497;
c) D. Y. Ong, D. Fan, D. J. Dixon, S. Chiba, Angew. Chem. Int. Ed. 2020, 59,
11903-11907; Angew. Chem. 2020, 132, 12001-12005.
[9] T. O. Ronson, E. Renders, B. F. Van Steijvoort, X. Wang, C. C. D. Wybon,
H. Prokopcova, L. Meerpoel, B. U. W. Maes, Angew. Chem. Int. Ed. 2019,
58, 482-487; Angew. Chem. 2019, 131, 492-497.
Acknowledgements
[10] C. Chatgilialoglu, A. Studer Eds., Encyclopedia of Radicals in Chemistry,
Biology and Materials (Wiley-Blackwell: Chichester, U.K., 2012).
[11] a) H. B. Kagan, J. L. Namy, Tetrahedron 1986, 42, 6573-6614; b) G. A.
Molander, C. R. Harris, Chem. Rev. 1996, 96, 307-338; c) K. C. Nicolaou, S.
P. Ellery, J. Chen, Angew. Chem. Int. Ed. 2009, 48, 7140-65; Angew. Chem.
2009, 121, 7276-7301; d) K. Gopalaiah, H. B. Kagan, Chem. Rec. 2013, 13,
187-208.
This work was generously supported by the National Natural
Science Foundation of China (21821002) and Shanghai Pujiang
Program (19PJ1411500). We thank X.-L. Hou, G.-S. Liu, Z.
Wang (all SIOC) and J. Pei (Peking University) for valuable
discussions during the course.
[12] a) D. J. Edmonds, D. Johnston, D. J. Procter, Chem. Rev. 2004, 104,
3371-3403; b) M. Szostak, D. J. Procter, Angew. Chem. Int. Ed. 2012, 51,
9238-9256; Angew. Chem. 2012, 124, 9372-9390; c) M. Szostak, M. Spain,
D. J. Procter, Chem. Soc. Rev. 2013, 42, 9155-9183; d) M. Szostak, N. J.
Fazakerley, D. Parmar, D. J. Procter, Chem. Rev. 2014, 114, 5959-6039.
[13] a) D. Seebach, Angew. Chem. Int. Ed. 1979, 18, 239-258; Angew. Chem.
1979, 91, 259-278; b) X. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41,
3511-3522; c) J. Streuff, Synthesis 2013, 45, 281-307.
Keywords: Amides
•
Electron transfer
•
1,2-Metalate
Rearrangement • Deoxygenative Arylation • SmI2
[1] A. Greenberg, C. M. Breneman, J. F. Eds. Liebman, The Amide Linkage:
Structural Significance in Chemistry, Biochemistry, and Materials Science
(Wiley, 2003).
[2] a) S. A. Ruider, N. Maulide, Angew. Chem. Int. Ed. 2015, 54, 13856-13858;
Angew. Chem. 2015, 127, 14062-14064; b) P.-Q. Huang, Acta. Chim. Sinica.
2018, 76, 357-365; c) T. Sato, M. Yoritate, H. Tajima, N. Chida, Org. Biomol.
Chem. 2018, 16, 3864-3875; d) D. Kaiser, A. Bauer, M. Lemmerer, N.
Maulide, Chem. Soc. Rev. 2018, 47, 7899-7925.
[14] X. Just-Baringo, D. J. Procter, Acc. Chem. Res. 2015, 48, 1263-1275.
[15] For selected examples, see: a) M. Szostak, M. Spain, A. J. Eberhart, D. J.
Procter, J. Am. Chem. Soc. 2014, 136, 2268-2271; b) M. Szostak, M. Spain,
D. J. Procter, J. Am. Chem. Soc. 2014, 136, 8459-66; c) M. Szostak, M.
Spain, A. J. Eberhart, D. J. Procter, J. Org. Chem. 2014, 79, 11988-2003; d)
D. Parmar, L. A. Duffy, D. V. Sadasivam, H. Matsubara, P. A. Bradley, R. A.
Flowers II, D. J. Procter, J. Am. Chem. Soc. 2009, 131, 15467-15473; e) S.
R. Huq, S. Shi, R. Diao, M. Szostak, J. Org. Chem. 2017, 82, 6528-6540.
[16] a) A. Ogawa, N. Takami, M. Sekiguchi, I. Ryu, N. Kambe, N. Sonoda, J.
Am. Chem. Soc. 1992, 114, 8729-8730; b) A. Ogawa, T. Nanke, N. Takami,
M. Sekiguchi, N. Kambe, N. Sonoda, Appl. Organomet. Chem. 1995, 9, 461-
466; c) A. Ogawa, N. Takami, T. Nanke, S. Ohya, T. Hirao, Tetrahedron 1997,
53, 12895-12902; d) P. R. Blakemore, R. W. Hoffmann, Angew. Chem. Int.
Ed. 2018, 57, 390-407; Angew. Chem. 2018, 130, 396-413.
[3] a) D. Seebach, Angew. Chem. Int. Ed. 2011, 50, 96-101; Angew. Chem.
2011, 123, 99-105; b) V. Pace, W. Holzer, B. Olofsson, Adv. Synth. Catal.
2014, 356, 3697-3736; c) D. Kaiser, N. Maulide, J. Org. Chem. 2016, 81,
4421-4428.
[4] a) A. Volkov, F. Tinnis, T. Slagbrand, P. Trillo, H. Adolfsson, Chem. Soc.
Rev. 2016, 45, 6685-6697; b) D. Matheau-Raven, P. Gabriel, J. A. Leitch, Y.
A. Almehmadi, K. Yamazaki, D. J. Dixon, ACS Catal. 2020, 10, 8880-8897;
c) D. Y. Ong, J. Chen, S. Chiba, Bull. Chem. Soc. Jpn. 2020, 93, 1339-1349;
d) A. Tahara, H. Tetrahedron Lett. 2020, 61, 151423-151430.
[5] a) A. M. Smith, R. Whyman, Chem. Rev. 2014, 114, 5477-5510; b) S.
Werkmeister, K. Junge, M. Beller, Org. Process. Res. Dev. 2014, 18, 289-
302; c) J. Blanchet, A. Chardon, E. Morisset, J. Rouden, Synthesis 2018, 50,
984-997; d) A. Khalimon, K. Gudun, D. Hayrapetyan, Catalysts 2019, 9, 490-
515; e) J. R. Cabrero-Antonino, R. Adam, V. Papa, M. Beller, Nat. Commun.
2020, 11, 3893-3910.
[17] a) C. Bouaucheau, A. Parlier, H. Rudler, J. Org. Chem. 1997, 62, 7247-
7259; b) J. Barluenga, F. Aznar, I. Gutiérrez, S. García-Granda, M. A. Llorca-
Baragaño, Org. Lett. 2002, 4, 4273-4276; c) Q. Ye, I. V. Komarov, A. J. Kirby,
Jr., J. M. J. Org. Chem. 2002, 67, 9288-9294; d) J. S. Alford, H. M. L. Davies,
Org. Lett. 2012, 14, 6020-6023; e) P. Cyr, A. Cote-Raiche, S. M. Bronner,
Org. Lett. 2016, 18, 6448-6451.
[6] For selected examples, see: a) Y. Sunada, H. Kawakami, T. Imaoka, Y.
Motoyama, H. Nagashima, Angew. Chem. Int. Ed. 2009, 48, 9511-9514;
Angew. Chem. 2009, 121, 9675-9678; b) Y. Motoyama, M. Aoki, N. Takaoka,
R. Aoto, H. Nagashima, Chem. Commun. 2009, 1574-1576; c) A. W. Gregory,
A. Chambers, A. Hawkins, P. Jakubec, D. J. Dixon, Chem. Eur. J. 2015, 21,
111-114; d) A. L. Fuentes de Arriba, E. Lenci, M. Sonawane, O. Formery, D.
J. Dixon, Angew. Chem. Int. Ed. 2017, 56, 3655-3659; Angew. Chem. 2017,
129, 3709-3713; e) M. Nakajima, T. Sato, N. Chida, Org. Lett. 2015, 17,
1696-1699; f) S. Katahara, S. Kobayashi, K. Fujita, T. Matsumoto, T. Sato,
N. Chida, J. Am. Chem. Soc. 2016, 138, 5246-5249; g) P.-Q. Huang, W. Ou,
F. Han, Chem. Commun. 2016, 52, 11967-11970; h) W. Ou, F. Han, X.-N.
[18] a) D. S. Matteson, D. Majumdar, J. Am. Chem. Soc. 1980, 102, 7588-
7590; b) D. S. Matteson, Stereodirected Synthesis with Organoboranes.
Reactivity and Structure Concepts in Organic Chemistry (Springer, Berlin,
1995).
[19] a) D. Leonori, V. K. Aggarwal, Acc. Chem. Res. 2014, 47, 3174-3183; b)
V. Capriati, S. Florio, Chem. Eur. J. 2010, 16, 4152-62; c) C. G. Watson, P.
J. Unsworth, D. Leonori, V. K. Aggarwal, Lithium−Boron Chemistry: A
Synergistic Strategy in Modern Synthesis. In Lithium Compounds in Organic
Synthesis; Luisi, R., Capriati, V., Eds.; Wiley-VCH: Weinheim, 2014; pp 397-
422.
5
This article is protected by copyright. All rights reserved.