The Journal of Organic Chemistry
Page 26 of 27
1
2
3
4
5
6
7
8
9
Devaraj, N. K.; Lee, J.; Hilderbrand, S. A.; Weissleder, R.; Bawendi, M. G. Development of a Bioorthogonal
and Highly Efficient Conjugation Method for Quantum Dots Using Tetrazine-Norbornene Cycloaddition. J.
Am. Chem. Soc. 2010, 132, 7838-7839.
16 (a) Gil de Montes, E.; Jiménez-Moreno, E.; Oliveira, B. L.; Navo, C. D.; Cal, P. M. S. D.; Jiménez-Osés, G.;
Robina, I.; Moreno-Vargas, A. J.; Bernardes, G. J. L. Azabicyclic Vinyl Sulfones for Residue-Specific Dual
Protein Labelling. Chem. Sci. 2019, 4515-4522. (b) Gil de Montes, E.; Istrate, A.; Navo, C. D.; Jiménez-
Moreno, E.; Hoyt, E. A.; Corzana, F.; Robina, I.; Jiménez-Osés, G.; Moreno-Vargas, A. J.; Bernardes, G. J. L.
Stable Pyrrole‐Linked Bioconjugates through Tetrazine‐Triggered Azanorbornadiene Fragmentation.
Angew. Chem. Int. Ed. 2020, 59, 6196-6200.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
17
(a) Lopez, S. A.; Houk, K. N. Alkene Distortion Energies and Torsional Effects Control Reactivities, and
Stereoselectivities of Azide Cycloadditions to Norbornene and Substituted Norbornenes. J. Org. Chem.
2013, 78, 1778−1783. (b) Schoenebeck, F.; Ess, D. H.; Jones, G. O.; Houk, K. N. Reactivity and
Regioselectivity in 1,3-Dipolar Cycloadditions of Azides to Strained Alkynes and Alkenes: A Computational
Study. J. Am. Chem. Soc. 2009, 131, 8121–8133. (c) Rondan, N. G.; Paddon-Row, M. N.; Caramella, P.;
Mareda, J.; Mueller, P. H.; Houk, K. N. Origin of Huisgen's Factor x: Staggering of Allylic Bonds Promotes
Anomalously Rapid Exo Attack on Norbornenes. J. Am. Chem. Soc. 1982, 104, 4974-4976.
18 Yip, C.; Handerson, S.; Jordan, R.; Tam, W. Highly Regio- and Stereoselective Intramolecular 1,3-Dipolar
Cycloadditions of Norbornadiene-Tethered Nitrile Oxides. Org. Lett. 1999, 1, 791-794.
19 Cristina, D.; de Amici, M.; de Micheli, C.; Gandolfi, R. Site Selectivity in the Reactions of 1,3-Dipoles with
Norbornadiene Derivatives. Tetrahedron 1981, 37, 1349-1357.
20 Fiꢀera, L.; Považanec, F.; Zulupský, P.; Kovuč, J.; Pavlovič, D. Site-Selectivity of 1,3-Dipolar Cycloadditions
to 2,3-Dimethoxycarbonyl-7-Oxabicyclo[2.2.1]heptadiene. Coll. Czech. Chem. Commun. 1983, 48, 3144-
3153.
21
Reinhoudt, D. N.; Kouwenhoven, C. G. Retro Diels-Alder Reactions of Heterocyclic Compounds under
Mild Conditions. Tetrahedron Lett. 1974, 15, 2163-2166.
22 (a) Van Berkel, S. S.; Dirks, A. J.; Meeuwissen, S. A.; Pingen, D. L. L.; Boerman, O. C.; Laverman, P.; Van
Delft, F. L.; Cornelissen, J. J. L. M.; Rutjes, F. P. J. T. Application of Metal-Free Triazole Formation in the
Synthesis of Cyclic RGD–DTPA Conjugates. ChemBioChem 2008, 9, 1805-1815. (b) Van Berkel, S. S.; Dirks,
A. J.; Debets, M. F.; Van Delft, F. L.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; Rutjes, F. P. J. T. Metal-free
Triazole Formation as a Tool for Bioconjugation. ChemBioChem, 2007, 8, 1504-1508.
23
Moreno-Clavijo, E.; Carmona, A. T.; Robina, I.; Moreno-Vargas, A. J. Diels-Alder Approaches for the
Synthesis of Bridged Bicyclic Systems: Synthetic Applications of (7-Hetero)Norbornadienes. Curr. Org.
Chem. 2016, 20, 2393-2420.
24 Norbornadiene is a typical example of molecule in which an interaction of double bonds through space
takes place, extending HOMO and LUMO over the two double bonds, see: Hoffmann, R. Interaction of
Orbitals through Space and through Bonds. Acc. Chem. Res. 1971, 4, 1-9.
25 (a) Krause, A.; Kirschning, A.; Dräger, G. Bioorthogonal Metal-Free Click-Ligation of cRGD-Pentapeptide
to Alginate. Org. Biomol. Chem. 2012, 10, 5547-5553. (b) Möller, L.; C. Hess, C.; Paleček, J.; Su, Y.; Haverich,
A.; Kirschning, A.; Dräger, G. Towards a Biocompatible Artificial Lung: Covalent Functionalization of Poly(4-
methylpent-1-ene) (TPX) with cRGD Pentapeptide. Beilstein J. Org. Chem. 2013, 9, 270–277.
26
Rutjes, F. P. J. T.; Cornelissen, J. J. L. M.; Van Berkel, S. S.; Dirks, A. J. Process for Preparation of
Trisubstituted 1,2,3-Triazoles. PCT Int. Appl. (2008), WO 2008075955 A2 20080626, June 26, 2008.
27 (a) Compound 2a had been previously prepared, see: Leung-Toung, R.; Liu, Y.; Muchowski, J. M.; Wu,
Y.-L. Synthesis of Conduramines from N-tert-Butoxycarbonylpyrrole. J. Org. Chem. 1998, 63, 3235-3250.
(b) Compound 2d had been previously prepared, see: Weeresakare, G. M.; Xu, Q.; Rainier, J. D. An
Anionic Condensation and Fragmentation Approach to Substituted 3-Pyrrolines. Tetrahedron Lett. 2002,
43, 8913-8915. (c) Compound 3a had been previously prepared, see: Rincon, R.; Aljarilla, A.; Criado, M.;
Plumet, J. Straightforward Synthesis of Strained α,β-Epoxysulfones via Epoxidation of Vinylsulfones Using
N-Methylmorpholine N-Oxide as Epoxidizing Reagent. Synlett 2007, 1948-1950. (d) Compounds 2c and 3c
had been previously prepared, see: Zhang, C.; Ballay, C. J., II; Trudell, M. L. 2-Bromoethynyl Aryl Sulfones
as Versatile Dienophiles: a Formal Synthesis of Epibatidine. J. Chem. Soc., Perkin Trans. 1 1999, 675-676.
(e) Compound 3d had been previously prepared, see: Rainier, J. D.; Xu, Q. A Novel Anionic Condensation,
Fragmentation, and Elimination Reaction of Bicyclo[2.2.1]heptenone Ring Systems. Org. Lett. 1999, 1, 27-
29.
28
β-Substituted pyrroles are often used as synthetic intermediates in the preparation of other complex
molecules, thus the presence of a N-protected group is desired in most of the cases.
ACS Paragon Plus Environment