Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
4
We found that cyclosulfinate 4 could be hydrolysed by base
to give 8-sulfinateG 5. Desulfurization of 5, with loss of SO2 to
give G 3, was slow at rt(14 d). Clean formation of G 3 from 8-
DOI: 10.1039/D0CC02926B
and M. Barboiu Chem. Commun. 2017, 53, 12668.
5
6
(a) T. N. Plank, L. P. Skala and J. T. Davis, Chem. Commun. 2017, 53,
6235. (b) S. Xiao and J. T. Davis, Chem. Commun. 2018, 54, 11300.
(a) Z. Li, L. E. Buerkle, M. R. Orseno, K. A. Streletzky, S. Seifert, A. M.
Jamieson and S. J. Rowan, Langmuir, 2010, 26, 10093. (b) R. Q. Zhong
et al. Adv. Mater. 2018, 30, 1706887. (c) F. Carducci, J. S. Yoneda, R.
Itri and P. Mariani, Soft. Matter, 2018, 14, 2938-2948.
o
sulfinateG 5 was accelerated, either by heating to 50 C or by
adding CH3COOH at rt (Fig. S32). This study shows that disulfide
1, 8,5ʹ-cyclosulfinateG 4 and 8-sulfinateG 5, new compounds to
the literature, are intermediates in oxidation of 8-thioG 1 to G
3. Importantly, hydrogels made from disulfide 1 respond to
oxidation. Thus, addition of disulfide 1 (8 mM, 0.5 wt %) to a
solution containing H2O2 (112 mM) and acetic acid (51 mM)
gave a hydrogel that contains the oxidant that causes its own
destruction. This gel disassembled over the course of 10 days at
rt, whereas a control without oxidant remained self-standing
(Fig. S33). So, hydrogels made from disulfide 1 can be
dismantled by either reduction or oxidation of S-S bonds. This
suggests that a biocompatible gel made from disulfide 1 might
well protect cells against cytotoxic ROS species such as H2O2.33
Oxidation of 8-thioG 2, a bioactive signalling molecule,16
with I2 provided 8-disulfideG 1, a compound we suggest is likely
naturally-occurring compound. Disulfide 1 is a supergelator as it
forms hydrogels at concentrations as low as 0.1 wt % at rt. This
propensity to gel is likely due to the 2 guanosines linked
together, since reductive cleavage of the S-S bond destroyed
the gel. We hypothesize, based on computations, that disulfide
1 adopts a C-shaped conformation that orients the guanosines
in an anti-parallel stacked conformation, which drives
formation of a G-quartet network that entrains water. Using
stronger oxidation conditions, with excess H2O2, we
demonstrated that both 8-thioG 2 and its disulfide 1 could be
converted to G 3 via oxidative desulfurization and we identified
C8-sulfinates that may be metabolic intermediates in this
biologically relevant pathway. These hydrogels made from
disulfide 1 are also responsive to oxidation by ROS species.
Currently, we are trying to control disassembly, under reducing
and oxidizing conditions, for release of molecular cargo from
this “G” gel.
7
8
L. Stefan and D. Monchaud Nature Rev. Chem. 2019, 3, 650.
J. L. Sessler, M. Sathiosatham, K. Doerr, V. Lynch, K. A. Abboud, A G-
Angew. Chem. Int. Ed. 2000,112, 1356
9
J. E. Betancourt and J. M. Rivera Langmuir 2015, 31, 2095.
10 R. N. Das, Y. P. Kumar, S. Pagoti, A. J. Patil and J. Dash, Chem. – Eur.
J., 2012, 18, 6008.
11 L. E. Buerkle, H. A. von Recum, S. J. Rowan, Chem. Sci. 2012, 3, 564.
12 (a) C. Arnal-Herault, A. Banu, M. Michau, D. Cot, E. Petit, and M. Barboiu,
Angew. Chem. Int. Ed. 2007, 46, 8409. (b) S. Pieraccini, M. Campitiello,
F. Carducci, J. T. Davis, P. Mariani and S. Masiero, Org.& Biomol. Chem,
2019, 17, 2759. (c) Y. He et al. Chem. Sci. 2019,10, 4192.
13 X. Sui, X. Feng, M. A. Hempenius and G. J. Vancso, J. Mater. Chem. B,
2013, 1, 1658.
14 (a) M. Ikeda,T. Tanida ,T. Yoshii and I. Hamachi, Adv. Mater. 2011, 23,
2819. (b) J. P. Wojciechowski, A. D. Martin and P. Thordarson J. Am.
Chem. Soc. 2018, 140, 2869. (c) D. Navarro-Barreda, C. A. Angulo-
Pachón, B. Bedrina, F. Galindo and J. F. Miravet, Macromol. Chem. Phys.
2020, 221, 1900419.
15 S. Xiao, P. Paukstelis, R. D. Ash, P. Y. Zavalij and J. T. Davis, Angew.
Chem. Int. Ed. 2019, 58, 18434.
16 Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109.
17 J. Cadet, T. Douki, D. Gasparutto, J. L. Ravanat, Mol. Mech. Mutagen.
2003, 531, 5.
18 M. Nishida et al. Nat. Chem. Biol. 2012, 8, 714.
19 K. Taras-Goslinska, F. Vetica, S. Barata-Vallejo, V. Triantakostanti, B.
Marciniak and C. Chatgilialoglu, C. Molecules 2019, 21, 3143.
20 S. Sahua, P. Sahooa, S. Patelb and B.K. Mishraa, J. Sulfur Chem. 2011,
32, 171
21 I. L. Doerr, I. Wempen, D. A. Clarke, and J. J. Fox J. Org. Chem. 1961,
26, 3401-3409
22 J. A. Burns, J. C. Butler, J. Moran, and G. M. Whitesides J. Org. Chem.
1991, 56, 2648-2650.
23 R. Stolarski, L. Dudycz and D. Shugar, Eur. J. Biochem. 1980, 108, 111.
24 (a) J. Liu, P. He, J. Yan, X. Fang, J. Peng, K. Liu and Y. Fang, Adv. Mater.
2008, 20, 2508. (b) K. Murata et al J. Am. Chem. Soc. 1994, 116, 6664.
(c) F. M. Menger and K. L. Caran, J. Am. Chem. Soc. 2000, 122, 47,
11679.
Acknowledgements
25 G-quartets are typically templated by alkali cations, although there are
examples of “empty” G-quartets. Here, the hydrogel formed by disulfide
1 does so without addition of metal salts. In fact, addition of salts caused
precipitation of 1 from solution without any gel formation (Fig. S30). An
alternative motif to the G-quartet that might drive gelation, one that we
haven’t ruled out, is the H-bonded ribbon I shown in Fig. S2.
26 S. Masiero, R. Trotta, S. Pieraccini, S. De Tito, R. Perone, A. Randazzo
and G. P. Spada, Org. Biomol. Chem. 2010, 8, 2683.
We thank the DOE (DE-FG02-98ER14888 to JD) and NSF
(CAREER, 1751568 to OG). We thank the NSF (NSF-1726058) for
funding a solid-state NMR spectrometer. We thank the
UMaryland computational resources (DeepThought2 and
MARCC/BlueCrab HPC clusters) and XSEDE (CHE160082 and
CHE160053). We thank Taylor Plank and Gretchen Peters for
helpful comments.
27 Uridine disulfides also show such optical activity: (a) C. Szantay, M. P.
Kotick, E. Shelter, T. J. Bardos, J. Am. Chem. Soc. 1967, 89, 713. (b) S.
Irie, Y. Inoue and F. Egami, J. Biochem. 1968, 63, 274.
28 A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
Notes and references
29 A. V, Marenich, C. J. Cramer, D. G. Truhlar, D. G. J. Phys. Chem. B. 2009,
113, 6378.
1
2
3
(a) C. D. Jones and J. W. Steed, Chem. Soc. Rev. 2016, 45, 6546. (b) E.
R. Draper and D. J. Adams Chem, 2017, 3, 390. (c) P. R. A. Chivers and
D. K. Smith Nat. Rev. Mater. 2019, 4, 463.
30 F. Weigend, F. and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
31 R. Steudel Angew Chem Int Ed. 1975, 14, 655-664.
32 H. E. van Wart and H. A. Scheraga Proc. Natl. Acad. Sci. USA, 1977,
74,13.
(a) X. Du, J. Zhou, J. Shi and B. Xu, Chem. Rev., 2015, 115, 13165. (b)
G. M. Peters and J. T. Davis, Chem. Soc. Rev. 2016, 45, 3188. (c) T.
Bhattacharyya, P. Saha, J. Dash, ACS Omega, 2018, 3, 2230.
I. Bang, Biochem. Z. 1910, 26, 293.
33 B. R. Dollinger, M. K. Gupta, J. R. Martin and C. L. Duvall, Tissue Engin.
Part A. 2017, 23, 1120.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins