Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
8052 Jiao et al.
Asian J. Chem.
PDI-Br shows two emission maxima at 554 and 588 nm.
However, PDI-TPA have no fluorescence emission was observed,
possibly due to fluorescence quenching attributed by efficient
intramolecular charge transfer from electron-donating
triphenylamine to electron deficient perylene diimide core19.
Electrochemical properties: The electrochemical
behaviour of perylene diimides has been investigated using
0.1M TBAP as electrolyte at room temperature in dichloro-
methane solutions was depicted in Fig. 4.
It has the potential to be used as electron donating and accep-
ting materials application in OSCs.
ACKNOWLEDGEMENTS
This research was financially supported by the Designed
Project in Innovation Team of Zhejiang Province, China (No.
2011R50001-08), the Natural Science Foundation of Zhejiang
province, China (No. LY12B04001) and the Science and
Technology Planning Project of Jiangbei District, Ningbo City,
Zhejiang province, China (No. 2013A0125). The research was
also supported by the Liu KongAiju Education Fund in Ningbo
University and the K.C. Wong Magna Fund in Ningbo University.
1.19
–0.58
–0.76
REFERENCES
1. Z. Sen, Pror. Energy Combust. Sci., 30, 367 (2004).
2. W.Y. Zhou, Y.G. Wen, L.C. Ma, Y.Q. Liu and X.W. Zhan, Macromole-
cules, 45, 4115 (2012).
PDI-TPA
–0.76
0.92
–0.96
3. R.M. Williams, N. Vân Anh and I.H.M. van Stokkum, J. Phys. Chem.
B, 117, 11239 (2013).
–0.27
–0.54
4. H. Langhals, O. Krotz, K. Polborn and P. Mayer, Angew. Chem. Int.
Ed., 44, 2427 (2005).
5. Y. Shibano, T. Umeyama,Y. Matano, N.V. Tkachenko, H. Lemmetyinen,
Y. Araki, O. Ito and H. Imahori, J. Phys. Chem. C, 111, 6133 (2007).
6. T.W. Holcombe, J.E. Norton, J. Rivnay, C.H. Woo, L. Goris, C. Piliego,
G. Griffini, A. Sellinger, J.-L. Bredas, A. Salleo and J.M.J. Frechet, J.
Am. Chem. Soc., 133, 12106 (2011).
–0.74
PDI-Br
–1.01
–1.0
7. E.J. Zhou, J.Z. Cong, Q.S. Wei, K. Tajima, C.H.Yang and K. Hashimoto,
Angew. Chem. Int. Ed., 50, 2799 (2011).
–2.0
–1.5
–0.5
0.0
0.5
1.0
1.5
2.0
Potential V(vs. SCE)
8. T.M. Wilson, M.J. Tauber and M.R. Wasielewski, J. Am. Chem. Soc., 131,
8952 (2009).
Fig. 4. Cyclic voltammograms of perylene diimides (PDIs)
9. S.H. Oh, B.G. Kim, S.J. Yun, M. Maheswara, K. Kim and J.Y. Do, Dyes
Pigments, 85, 37 (2010).
PDI-Br has no oxidation wave could be detected, the
HOMO level calculated using the optical bandgap was found
to be -6.07 eV. Two clear quasi reversible one electron reduc-
tion waves could be found, which can be attributed to the reduc-
tion of the perylenediimide moiety and show the good electron
acceptor ability of these materials20,21. PDI-TPA shows the
ambipolar behaviour, the onset potential for reduction and
oxidation occurs at -0.80 and 0.90 V, which the LUMO and
HOMO levels were calculated as -3.60 and -5.30 eV, respec-
tively. The electrochemical band gap was calculated as -1.70
eV22,23, which is the lower value. The decrease in electro-
chemical band gap is due to the introduction of electron donating
triphenylamine unit which increase the π-conjugation of
substituents as compared to the PDI-Br.
10. C.B. Fan, S.Z. Pu, G. Liu and T.S. Yang, J. Photochem. Photobiol. A,
194, 333 (2008).
11. H.W. Chang, K.H. Lin, C.C. Chueh, G.S. Liou and W.C. Chen, J. Polym.
Sci. A Polym. Chem., 47, 4037 (2009).
12. Y.D. Zhang, H.L. Wang,Y. Xiao, L.G. Wang, D.Q. Shi and C.H. Cheng,
Appl. Mater. Interfaces, 5, 11093 (2013).
13. G.S. Liou, Y.L. Yang, W.C. Chen and Y.O. Su, J. Polym. Sci. A Polym.
Chem., 45, 3292 (2007).
14. K. Yuan Chiu, T. Xiang Su, J. Hong Li, T.-H. Lin, G.-S. Liou and S.-H.
Cheng, J. Electroanal. Chem., 575, 95 (2005).
15. F. Würthner, V. Stepanenko, Z. Chen, C.R. Saha-Möller, N. Kocher
and D. Stalke, Org. Chem., 69, 7933 (2004).
16. E.M. Calzado, J.M. Villalvilla, P.G. Boj, J.A. Quintana, R. Gomez,
J.L. Segura and M.A. Diaz-Garcia, J. Phys. Chem. C, 111, 13595 (2007).
17. C.C. Chao, M.K. Leung, Y.O. Su, K.Y. Chiu, T.H. Lin, S.J. Shieh and
S.C. Lin, J. Org. Chem., 70, 4323 (2005).
18. S. Vajiravelu, L. Ramunas, G. Juozas Vidas, G. Valentas, J. Vygintas
and S. Valiyaveettil, J. Mater. Chem., 19, 4268 (2009).
19. M. Antonietta Loi, P. Denk, H. Hoppe, H. Neugebauer, C. Winder, D.
Meissner, C. Brabec, N. Serdar Sariciftci, A. Gouloumis, P. Vázquez
and T. Torres, J. Mater. Chem., 13, 700 (2003).
Conclusion
A novel D-A-D perylene diimide derivative PDI-TPA has
been successfully synthesized. PDI-TPA exhibits excellent
solubility in common solvents which is propitious to form film
due to the introduction of the bulky 3-(2-ethylhexoxy)propyl-
amine unit. The absorption bands span a wide range of the
visible spectra and extend to the infrared region, which can
greatly improve the utilization of the solar spectrum. In addi-
tion, PDI-TAP exhibits an ambipolar behaviour, the HOMO
and LUMO energy level are -5.64 and -3.94 eV, respectively.
20. R. Gómez, J.L. Segura and N. Martín, Org. Lett., 7, 717 (2005).
21. J.L. Segura, R. Gómez, R. Blanco, E. Reinold and P. Bäuerle, Chem.
Mater., 18, 2834 (2006).
22. A.R. Rabindranath, Y. Zhu, I. Heim and B. Tieke, Macromolecules,
39, 8250 (2006).
23. M. Luo, H. Shadnia, G. Qian, X.B. Du, D.B. Yu, D.G. Ma, J.S. Wright
and Z.Y. Wang, Chem. Eur. J., 15, 8902 (2009).