H. Zhao et al. / Journal of Molecular Catalysis B: Enzymatic 72 (2011) 163–167
167
10.0
8.0
6.0
4.0
2.0
0.0
Acknowledgements
This research was supported by the National Institutes of Health
under a RIMI grant (5P20MD003941) subproject to HZ.
References
[1] F. van Rantwijk, R.A. Sheldon, Chem. Rev. 107 (2007) 2757.
[2] H. Zhao, J. Chem. Tech. Biotechnol. 85 (2010) 891.
[3] M. Moniruzzaman, K. Nakashima, N. Kamiya, M. Goto, Biochem. Eng. J. 48 (2010)
295.
[4] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chem. Com-
mun. (2003) 70.
[5] A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, J. Am. Chem. Soc.
126 (2004) 9142.
[6] A.P. Abbott, G. Capper, S. Gray, ChemPhysChem 7 (2006) 803.
[7] R.S. Boethling, E. Sommer, D. DiFiore, Chem. Rev. 107 (2007) 2207.
[8] J.K. Blusztajn, Science 281 (1998) 794.
0.0
0.2
0.4
0.6
0.8
1.0
Thermodynamic water acꢀvity (aw)
[9] A.P. Abbott, G. Capper, B.G. Swain, D.A. Wheeler, Trans. Inst. Metal Finish. 83
(2005) 51.
[10] Y. Hou, Y. Gu, S. Zhang, F. Yang, H. Ding, Y. Shan, J. Mol. Liq. 143 (2008) 154.
[11] A.P. Abbott, P.M. Cullis, M.J. Gibson, R.C. Harris, E. Raven, Green Chem. 9 (2007)
868.
[12] J.T. Gorke, F. Srienc, R.J. Kazlauskas, Chem. Commun. (2008) 1235.
[13] M.C. Gutierrez, M.L. Ferrer, L. Yuste, F. Rojo, F. del Monte, Angew. Chem. Int. Ed.
49 (2010) 2158.
[14] H. Zhao, G.A. Baker, S. Holmes, Org. Biomol. Chem. 9 (2011) 1908.
[15] U.T. Bornscheuer, R.J. Kazlauskas, Hydrolases in Organic Synthesis, Wiley-VCH,
Weinheim, 2006.
[16] A.R. Toral, A.P. de los Ríos, F.J. Hernández, M.H.A. Janssen, R. Schoevaart, F. van
Rantwijk, R.A. Sheldon, Enzyme Microb. Technol. 40 (2007) 1095.
[17] L.A. Lyublinskaya, S.V. Belyaev, A.Y. Strongin, L.F. Matyash, E.D. Levin, V.M.
Stepanov, Anal. Biochem. 62 (1974) 371.
[18] B.F. Erlanger, A.G. Cooper, A.J. Bendich, Biochemistry 3 (1964) 1880.
[19] I. Dinarès, C.G. de Miguel, A. Ibán˜ez, N. Mesquida, E. Alcalde, Green Chem. 11
(2009) 1507.
Fig. 3. The relationship between water content and thermodynamic water activity
(aw) of t-butanol at 25 ◦C.
that the enzyme’s activity is far more dependent upon aw than on
the analytical water content per se [32]. (3) In the present case,
the enzyme-host (chitosan) additionally contains hydroxyl groups,
which allow the support to absorb water molecules via hydrogen-
bond interactions, further reducing aw in the reaction system.
Therefore, a higher selectivity might reasonably be expected for the
chitosan-immobilized proteases than for freely dissolved enzyme.
4. Conclusions
Glycerol-based DESs derived from choline chloride (or acetate)
are shown to possess relatively low viscosities and high ther-
mal stability. Furthermore, these eutectic melts can be tailored
as effective solvents for carrying out protease-mediated synthe-
sis. In particular, cross-linked subtilisin exhibited a high activity
and selectivity in 1:2 choline chloride/glycerol in the presence
of 3% (v/v) water whereas free subtilisin gave poor selectivity
in the same DES. Subtilisin was also found to be more active in
1:2 choline chloride/glycerol than in choline acetate/glycerol mix-
tures, and subtilisin was also more compatible with DESs than
was ␣-chymotrypsin. The excellent suitability of DESs for subtilisin
biocatalysis is thought to be tied to the low molar concentration
of the denaturing anion (relative to their IL peers), reducing the
propensity for hydrogen bond formation between these detrimen-
tal anions and the protein itself, and the hydrophilic features of the
chitosan host which aid in controlling the local water activity in the
vicinity of the enzyme.
[20] J.A. Laszlo, D.L. Compton, Biotechnol. Bioeng. 75 (2001) 181–186.
[21] M. Eckstein, M. Sesing, U. Kragl, P. Adlercreutz, Biotechnol. Lett. 24 (2002)
867.
[22] M. Eckstein, P. Wasserscheid, U. Kragl, Biotechnol. Lett. 24 (2002) 763–767.
[23] O. Ulbert, K. Bélafi-Bakó, K. Tonova, L. Gubicza, Biocatal. Biotransform. 23 (2005)
177.
[24] A.P. Abbott, R.C. Harris, K.S. Ryder, C. D’Agostino, L.F. Gladden, M.D. Mantle,
Green Chem. 13 (2011) 82.
[25] H. Zhao, G.A. Baker, Z. Song, O. Olubajo, T. Crittle, D. Peters, Green Chem. 10
(2008) 696.
[26] H. Zhao, C.L. Jones, J.V. Cowins, Green Chem. 11 (2009) 1128.
[27] I. Roy, M.N. Gupta, Tetrahedron 59 (2003) 5431.
[28] H. Zhao, Z. Song, O. Olubajo, Biotechnol. Lett. 32 (2010) 1109.
[29] J.M. Guisan, Immobilization of Enzymes and Cells, Humana Press Inc, Totowa,
2006.
[30] T. De Diego, P. Lozano, M.A. Abad, K. Steffensky, M. Vaultier, J.L. Iborra, J. Biotech-
nol. 140 (2009) 234.
[31] C. Vafiadi, E. Topakas, V.R. Nahmias, C.B. Faulds, P. Christakopoulos, J. Biotech-
nol. 139 (2009) 124.
[32] G. Bell, P.J. Halling, B.D. Moore, J. Partridge, D.G. Rees, Trends Biotechnol. 13
(1995) 468.