568
C. Bressy et al.
LETTER
O
O
[Cp*Ru(MeCN)3]PF6, HSi(OEt)3
then
Grubbs II
then
OMe OTBS
O
OMe OR
O
AgF
Me
Me
7 R = TBS
HF aq
64% (from 6)
6
(–)-pironetin R = H
Scheme 4 Total synthesis of (–)-pironetin
(15) The reaction was monitored by TLC.
(16) General Procedure for the One-Pot Hydrosilylation–
RCM–Protodesilylation
chemoselective one-pot procedure, w-alkenyl a,b-unsat-
urated lactones were obtained in moderate to good yields
under mild conditions. Finally, this methodology was
used as a key step in the total syntheses of (+)-gonio-
thalamin and (–)-pironetin, two natural products with in-
teresting biological activities. Further applications of this
methodology to targets of major interest will be described
in due course.
To a solution of alkyne (1 equiv) in CH2Cl2 (0.1 M solution)
at 0 °C was added triethoxysilane (1.2 equiv) followed by
Cp*Ru(MeCN)3PF6 (0.01 equiv). The flask was
immediately allowed to warm to r.t. and stirred until
complete conversion of the starting material. Grubbs’
second-generation catalyst was then added (0.05 equiv), and
the reaction mixture was stirred at 40 °C until complete
conversion. The reaction mixture was then allowed to reach
r.t. before AgF (2.4 equiv) was added followed by MeOH
(0.01 M), H2O (0.01 M), and THF (0.1 M). Stirring was
continued in the absence of light until complete consumption
of the silylated intermediate, and the reaction mixture was
filtered through Celite, extracted with CH2Cl2, dried over
MgSO4, and evaporated under reduced pressure. The crude
residue was purified by flash column chromatography on
SiO2 using a gradient of eluents to afford the desired lactone.
Representative Characterization Data for Selected
Products
Acknowledgment
We would like to gratefully acknowledge Bayer CropScience and
CDP-Innovation for financial support.
References and Notes
(1) Hlubucek, J. R.; Robertson, A. V. Aust. J. Chem. 1967, 20,
2199.
(2) (a) Yoshida, T.; Koizumi, K.; Kawamura, Y.; Matsumoto,
K.; Itazaki, H. JP 5-310726, 1993. (b) Yoshida, T.;
Koizumi, K.; Kawamura, Y.; Matsumoto, K.; Itazaki, H. EP
560389 A1, 1993. (c) Yasui, K.; Tamura, Y.; Nakatani, T.;
Kawada, K.; Ohtani, M. J. Org. Chem. 1995, 60, 7567.
(3) (a) Kobayashi, S.; Tsuchiya, K.; Harada, T.; Nishide, M.;
Kurokawa, T.; Nakagawa, T.; Shimada, N.; Kobayashi, K.
J. Antibiot. 1994, 47, 697. (b) Kobayashi, S.; Tsuchiya, K.;
Harada, T.; Nishide, M.; Kurokawa, T.; Nakagawa, T.;
Shimada, N.; Iitaka, T. J. Antibiot. 1994, 47, 703.
(4) Kobayashi, M.; Higuchi, K.; Murakami, N.; Tajima, H.;
Aoki, S. Tetrahedron Lett. 1997, 38, 2859.
(5) Spencer, G. F.; England, R. E.; Wolf, R. B. Phytochemistry
1984, 23, 2499.
(6) (a) Fushimi, S.; Nishikawa, S.; Shimazu, A.; Seto, H.
J. Antibiot. 1989, 42, 1019. (b) Fushimi, S.; Furihata, K.;
Seto, H. J. Antibiot. 1989, 42, 1026.
(7) (a) Cossy, J.; Bauer, D.; Bellosta, V. Tetrahedron Lett. 1999,
40, 4187. (b) Fürstner, A.; Langemann, K. J. Am. Chem.
Soc. 1997, 119, 9130. (c) Ghosh, A. K.; Cappiello, J.; Shin,
D. Tetrahedron Lett. 1998, 39, 4651. (d) Boucard, V.;
Broustal, G.; Campagne, J. M. Eur. J. Org. Chem. 2007, 225.
(8) Wang, Y.-G.; Takeyama, R.; Kobayashi, Y. Angew. Chem.
Int. Ed. 2006, 45, 3320.
Compound 2a: IR: 2960, 2920, 2870, 1720, 1380, 1240, 980,
820 cm–1. 1H NMR (400 MHz, CDCl3): d = 6.81 (dt, J = 9.6,
4.3 Hz, 1 H), 6.07 (dt, J = 9.6, 1.8 Hz, 1 H), 5.82 (dtd,
J = 15.4, 5.8, 1.0 Hz, 1 H), 5.58 (ddt, J = 15.4, 6.6, 1.5 Hz,
1 H), 4.87 (qapp, J = 7.3 Hz, 1 H), 2.45–2.39 (m, 2 H), 2.04
(qapp, J = 6.8 Hz, 2 H), 1.41 (happ, J = 7.3 Hz, 2 H), 0.90 (t,
J = 7.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): d = 164.2 (s),
144.7 (d), 135.5 (d), 126.9 (d), 121.6 (d), 78.3 (d), 34.2 (t),
29.8 (t), 21.9 (t), 13.6 (q). ESI-HRMS: m/z calcd for
C10H14NaO2 [M + Na]+: 189.0891; found: 189.0886.
Compound 2c: IR: 2920, 1720, 1640, 1390, 1250, 820 cm–1.
1H NMR (400 MHz, CDCl3): d = 6.87 (ddd, J = 9.8, 5.0, 3.0
Hz, 1 H), 6.01 (dt, J = 9.8, 2.0 Hz, 1 H), 5.78 (ddt, J = 17.2,
10.1, 6.6 Hz, 1 H), 5.01 (dqapp, J = 17.2, 2.0 Hz, 1 H), 5.01
(dqapp, J = 10.1, 3.3 Hz, 1 H), 4.41 (m, 1 H), 2.35–2.29 (m, 2
H), 2.14–2.01 (m, 2 H), 1.86–1.71 (m, 1 H), 1.70–1.56 (m, 2
H), 1.56–1.42 (m, 1 H). 13C NMR (100 MHz, CDCl3): d =
163.5 (s), 144.0 (d), 137.0 (d), 120.4 (d), 114.0 (t), 76.8 (d),
32.3 (t), 31.2 (t), 28.4 (t), 22.9 (t). ESI-HRMS: m/z calcd for
C10H14NaO2 [M + Na]+: 189.0891; found: 189.0886.
(17) Jewers, J. R.; Davies, J. B.; Dougan, J.; Manchanda, A. H.;
Blunden, G.; Kyi, A.; Wetchainan, S. Phytochemistry 1972,
11, 2025.
(18) Tanaka, S.; Yoichi, S.; Ao, L.; Matumoto, M.; Morimoto,
K.; Akimoto, N.; Honda, G.; Tabata, M.; Oshima, T.;
Masuda, T.; bin Asmawi, M. Z.; Ismail, Z.; Yusof, S. M.;
Din, L. B.; Said, I. M. Phytother. Res. 2001, 15, 681.
(19) Pospísil, J.; Markó, I. E. Tetrahedron Lett. 2006, 47, 5933.
(20) Kobayashi, S.; Tsuchiya, K.; Harada, T.; Nishide, M.;
Kurokawa, T.; Nakagawa, T.; Shimada, N.; Kobayashi, K.
J. Antibiot. 1994, 47, 697.
(9) Langille, N. F.; Panek, J. S. Org. Lett. 2004, 6, 3203.
(10) Ono, K.; Nagat, T.; Nishida, A. Synlett 2003, 1207.
(11) Yang, Z.-Q.; Geng, X.; Solit, D.; Pratilas, C. A.; Rosen, N.;
Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 7881.
(12) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2001, 123, 12726.
(13) Lacombe, F.; Radkowski, K.; Seidel, G.; Fürstner, A.
Tetrahedron 2004, 60, 7315.
(14) For a recent review on tandem catalysis, see: (a) Wasilke,
J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev.
2005, 105, 1001. See also: (b) Posner, G. H. Chem. Rev.
1986, 86, 831. (c) Ho, T.-L. Tandem Organic Reactions;
Wiley-Interscience: New York, 1992. (d) Hall, N. Science
1994, 266, 32. (e) Tietze, L. F. Chem. Rev. 1996, 96, 115.
(21) Yoshida, T.; Koizumi, K.; Kawamura, Y.; Matsumoto, K.;
Itazaki, H. JP 5-310726, 1993.
(22) Bressy, C.; Vors, J. P.; Hillebrand, S.; Arseniyadis, S.;
Cossy, J. Angew. Chem. Int. Ed. 2008, 10137.
Synlett 2009, No. 4, 565–568 © Thieme Stuttgart · New York