Enyne 1a (R1 ) Me) reacted with 3-hexyne (2a) to give
a cyclohexadiene derivative 3a and a cycloisomerization
product 4a (eq 1).
Table 2. Cycloaddition of 1 with 2a
time
yield of 3
(%)b
yield of 4
(%)b
entry
enyne
alkyne
(h)
1
2
3
4
5
6
1a
1a
1a
1a
1b
1c
2a
2b
2c
2d
2a
2a
3
6
14
24
3
75 (3a)
53 (3b)
39 (3c)
71 (3d)
15 (3e)
12 (3f)
10 (4a)
20 (4a)
25 (4a)
2 (4a)
75 (4b)c
73 (4c)d
3
a Mixture of 1 (1 mmol), 2 (3 mmol), Ir complex (0.02 mmol), ligand
(P/Ir)2), and toluene (5 mL) was stirred in refluxing toluene. b Yields are
isolated yields based on 1. c (Z)-4b/(E)-4b/5b ) 74/2/24. d (Z)-4c/(E)-4c/
5c ) 66/11/23.′
decreased with the use of 4-octyne (2b) and 5-decyne (2c)
(entries 2 and 3 vs entry 1), but the reaction with 1,4-
dimethoxy-2-butyne (2d) gave 3d in 71% yield, which was
comparable to that with 3-hexyne (2a) (entry 4). The reaction
of 1a with 1-alkynes such as 1-hexyne or propargylic alcohol
did not give any cyclohexadiene derivatives. The starting
material was recovered in quantitative yield. The substituent
on the alkyne part of the enyne strongly affected the reaction.
The reaction of an enyne substituted with other than a methyl
group on the alkyne part with 2a gave a cycloisomerization
product as a major product (entries 5 and 6). These reactions
gave cycloaddition products in low yields.
Cycloaddition competed with cycloisomerization to give 4a.
Phosphine ligands affected the yields of the products. The
results are shown in Table 1. Dppe gave the best results
Table 1. Effect of Ligands on Cycloaddition of 1a with 2aa
time yield of 3a yield of 4a
entry
ligandb
(h)
(%)c
(%)c
1
2
3
4
5
dppm
dppe
dppp
dppb
1,2-bis(diphenyl-
phosphino)benzene
(Z)-1,2-bis(diphenyl-
phosphino)ethylene
dppf
5
3
19
2
69
75
12
2
3
10d
51
The cycloisomerization of enynes has been extensively
studied as a unique tool for the synthesis of various types of
cyclic compounds.6 Several transition metal complexes such
as Pd,7 Rh,8 Ru,9 Co,10 and Ti11 have been reported to be
catalysts for this reaction. However, new catalysts are still
needed to expand the scope and selectivity of this reaction.
90e
23
8
51
6
10
65
3
7
8
9
1
25
24
0
0
7
90f
74g
63h
PPh3
PMePh2
(6) (a) Fairlamb, I. J. S. Angew. Chem., Int. Ed. 2004, 43, 1048. (b)
Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215. (c) Aubert, C.; Buisine,
O.; Malacria, M. Chem. ReV. 2002, 102, 813. (d) Trost, B. M.; Krische, M.
J. Synlett 1998, 1.
a Mixture of 1a (1 mmol), 2a (3 mmol), Ir complex (0.02 mmol), ligand
(P/Ir ) 2), and toluene (5 mL) was stirred in refluxing toluene. b Abbre-
viations: dppm, 1,2-bis(diphenylphosphino)methane; dppe, 1,2-bis(diphenyl-
phosphino)ethane; dppp, 1,2-bis(diphenylphosphino)propane; dppb, 1,2-
bis(diphenylphosphino)butane; dppf, 1,1′-bis(diphenylphosphino)ferocene
c Yields are isolated yields based on 1a. d (Z)-4a/(E)-4a/5a ) 89/7/4. e (Z)-
4a/(E)-4a/5a ) 94/3/3. f (Z)-4a/(E)-4a/5a ) 95/4/1. g (Z)-4a/(E)-4a/5a )
50/45/5. h (Z)-4a/(E)-4a/5a ) 56/39/5.
(7) (a) Mikami, K.; Hatano, M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
5767. (b) Hatano, M.; Mikami, K. J. Am. Chem. Soc. 2003, 125, 4704. (c)
Hatano, M.; Terada, M.; Mikami, K. Angew. Chem., Int. Ed. 2001, 40, 249.
(d) van Boxtel, L. J.; Ko¨rbe, S.; Noltemeyer, M.; De Meijere, A. Eur. J.
Org. Chem. 2001, 12, 2283. (e) Galland, J.-C.; Dias, S.; Savignac, M.; Geneˆt,
J.-P. Tetrahedron 2001, 57, 5137. (f) Goeke, A.; Sawamura, M.; Kuwano,
R.; Ito, Y. Angew. Chem., Int. Ed. 1996, 35, 662. (g) Trost, B. M.; Tanoury,
G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. J. Am. Chem. Soc. 1994,
116, 4255. (h) Trost, B. M., Romero, D. L.; Rise, F. J. Am. Chem. Soc.
1994, 116, 4268. (i) Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D.
J.; Mueller, T. J. Am. Chem. Soc. 1991, 113, 636. (j) Trost, B. M. Acc.
Chem. Res. 1990, 23, 34.
(8) (a) Tong, X.; Li, D.; Zhang, Z.; Zhang, X. J. Am. Chem. Soc. 2004,
126, 7601. (b) Mikami, K.; Yusa, Y.; Hatano, M.; Wakabayashi, K.; Aikawa,
K. J. Chem. Soc., Chem. Commun. 2004, 98. (c) Mikami, K.; Yusa, Y.;
Hatano, M.; Wakabayashi, K.; Aikawa, K. Tetrahedron 2004, 60, 4475.
(d) Tong, X.; Zhang, Z.; Zhang, X. J. Am. Chem. Soc. 2003, 125, 6370. (e)
Lei, A.; Waldkirch, J. P.; He, M.; Zhang, X. Angew. Chem., Int. Ed. 2002,
41, 4526. (f) Cao. P.; Zhang, X. Angew. Chem., Int. Ed. 2000, 39, 4104.
(g) Cao, P.; Wang B.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 6490.
(9) (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2002, 124, 5025.
(b) Paih, J. L.; Rodr´ıguez, D. C.; De´rien, S.; Dixneuf, P. H. Synlett 2000,
95. (c) Nishida, M.; Adachi, N.; Onozuka, K.; Matsumura, H.; Mori, M. J.
Org. Chem. 1998, 63, 9158.
(entry 2). The reaction in refluxing toluene for 3 h gave 3a
in 75% yield. The reaction using dppm gave 3a in 69% yield
(entry 1). Dppp and dppb were less effective than dppe
(entries 3 and 4). Reactions using 1,2-bis(diphenylphosphi-
no)benzene and (Z)-1,2-bis(diphenylphosphino)ethylene gave
3a in a yield comparable to that with dppm (entries 5 and
6). When the ligand was dppf, PPh3, or PMePh2, cyclo-
isomerization was preferred to cycloaddition (entries 7-9).
The reaction using dppf gave cycloisomerization product 4a
in 90% yield (vide infra) (entry 7).
On the basis of these results, several internal monoynes
were examined for [Ir(cod)Cl]2/dppe-catalyzed cycloaddition
(Table 2). Enyne 1a reacted with 2b-d under the same
conditions as with 2a. The yields of 1,3-cyclohexadienes (3)
(10) (a) Ajamian, A.; Gleason, J. L. Org. Lett. 2003, 5, 2409. (b) Buisine,
O.; Aubert, C.; Malacria, M. Chem. Eur. J. 2001, 7, 3517. (c) Llerena, D.;
Aubert, C.; Malacria, M. Tetrahedron Lett. 1996, 37, 7353.
(11) Sturla, S. J.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc.
1999, 121, 1976.
1712
Org. Lett., Vol. 7, No. 9, 2005