provide a unique pathway for proton conduction under humid
conditions, showing noticeably high proton conductivity
values across a wide range of temperatures and 98% relative
humidity. Moreover, proton conductivity shown by Cd-5TIA
(3.61 ꢀ 10ꢁ3 S cmꢁ1 at 301 K) is at a high position among the
proton conducting MOFs reported till date. We have also
studied and compared the proton conductivity of the literature
reported MONT architecture (In-IA). We expect that this
finding will lead to many new applications previously unrealized
in nanotube based porous materials.
Notes and references
1 (a) M. J. Zaworotko, Nature, 2008, 451, 410; (b) G. Ferey, Chem.
´
Soc. Rev., 2008, 37, 191; (c) B. Chen, S. Xiang and G. Qian, Acc.
Chem. Res., 2010, 43, 1115; (d) R. Banerjee, A. Phan, B. Wang,
C. Knobler, H. Furukawa, M. O’Keeffe and O. M. Yaghi, Science,
2008, 319, 939; (e) S. K. M. Nalluri, J. B. Bultema, E. J. Boekema
and B. J. Ravoo, Chem. Sci., 2011, 2, 2383.
2 (a) X. C. Huang, W. Luo, Y. F. Shen, X. J. Lin and D. Li, Chem.
Commun., 2008, 3995; (b) Z. Fei, D. Zhao, T. J. Geldbach,
R. Scopelliti, P. J. Dyson, S. Antonijevic and G. Bodenhausen,
Angew. Chem., Int. Ed., 2005, 44, 5720.
Fig. 3 Schematic representation of the Grotthuss proton hopping
mechanism along 1D nanochannels for In-5TIA and Cd-5TIA MONTs.
The arrows indicate the possible movement of the H+
3 (a) K. Otsubo, Y. Wakabayashi, J. Ohara, S. Yamamoto,
H. Matsuzaki, H. Okamoto, K. Nitta, T. Uruga and H. Kitagawa,
Nat. Mater., 2011, 10, 291; (b) F. Dai, H. He and D. Sun, J. Am.
Chem. Soc., 2008, 130, 14064; (c) L. Li, J. Luo, S. Wang, Z. Sun,
T. Chen and M. Hong, Cryst. Growth Des., 2011, 11, 3744.
4 (a) P. Thanasekaran, T. T. Luo, C. H. Lee and K. L. Lu, J. Mater.
Chem., 2011, 21, 13140; (b) T. T. Luo, H. C. Wu, Y. C. Jao,
S. M. Huang, T. W. Tseng, Y. S. Wen, G.-H. Lee, S.-M. Peng and
K. L. Lu, Angew. Chem., 2009, 48, 9461; (c) S.-N. Wang, H. Xing,
Y.-Z. Li, J. Bai, M. Scheer, Y. Pan and X.-Z. You, Chem.
Commun., 2007, 2293; (d) Z.-Z. Lu, R. Zhang, Y.-Z. Li,
Z.-J. Guo and H.-G. Zheng, J. Am. Chem. Soc., 2011, 133, 4172.
5 (a) H. Sun, H. Mei, G. An, J. Han and Y. Pan, CrystEngComm,
2011, 13, 734; (b) R. Gutzler, L. Cardenas and F. Rosei, Chem.
Sci., 2011, 2, 2290.
.
show proton conductivity till 368 K. To further compare the
proton conducting efficiency of In-5TIA and Cd-5TIA, we
have collected the proton conductivity data of the literature
reported MONT architecture (In-IA) (Fig. 1a), which reveal
that In-IA and In-5TIA have comparable proton conductivity
(5.35 ꢀ 10ꢁ5 S cmꢁ1 for In-5TIA and 2.20 ꢀ 10ꢁ4 S cmꢁ1 for
In-IA, respectively, at 301 K and 98% RH) as both materials
contain one dimethyl ammonium cation per SBU within the
framework. Accordingly, Cd-5TIA shows higher proton
conduction (3.61 ꢀ 10ꢁ3 S cmꢁ1 at 301 K and 98% RH) than
In-5TIA and In-IA as Cd-5TIA possesses two dimethyl
ammonium cations per SBU inside the framework (Fig. 3,
Fig. S43 and S44 and page S51, ESIw). In-5TIA and Cd-5TIA
show considerably lower activation energy values than In-IA
(0.137 eV for In-5TIA and 0.163 eV for Cd-5TIA whereas
0.47 eV for In-IA). Thus, proton conductivity in In-5TIA and
Cd-5TIA follows mainly the Grotthuss proton hopping
mechanism13 whereas proton conductivity of In-IA follows chiefly
a vehicular mechanism, which hints at the role of the triazole
moiety in providing proton conducting pathways in In-5TIA and
Cd-5TIA and hence the advantages of functionalization of the
framework. The activation energy value of In-5TIA (0.137 eV) is
comparable to that of nafion based membrane electrolytes
(0.22 eV),14 and is the lowest activation value reported till date for
MOF based proton conducting materials (Table S5, ESIw).
Cd-5TIA also possesses a low activation energy value of 0.163 eV.
In conclusion, we could design and synthesize two isostructural
single-walled functionalized metal–organic nanotubes (MONTs)
by using 5-TIA as a single organic building block and In(III) or
Cd(II) as a metal node. These large MONTs are held together
by hydrogen bonding interactions, leading to unique supra-
molecular nanotubular arrays. In this work, 5-TIA serves a
dual purpose, constructing nanotubular architecture using a
single organic precursor linked with an In(III) or Cd(II) node,
as well as functionalizing the pore wall with triazole moieties.
The triazole decorated pores along with dimethyl ammonium
cations and the Cd(II) or In(III) bound carboxylate moiety
6 G. R. Desiraju, Chem. Commun., 2005, 2995.
7 F. Bu and S.-J. Xiao, CrystEngComm, 2010, 12, 3385.
8 (a) T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda
and S. Kitagawa, Angew. Chem., Int. Ed., 2009, 48, 4739; (b) M. Jung,
H. Kim, K. Baek and K. Kim, Angew. Chem., Int. Ed., 2008, 47, 5755.
9 J. Sun, L. Weng, Y. Zhou, J. Chen, Z. Chen, Z. Liu and D. Zhao,
Angew. Chem., Int. Ed., 2002, 41, 4471.
10 (a) B. C. H. Steele and A. Heinzel, Nature, 2001, 414, 345;
(b) K.-D. Kreuer, S. J. Paddison, E. Spohr and M. Schuster, Chem.
Rev., 2004, 104, 4637; (c) E. Fabbri, D. Pergolesi and E. Traversa,
Chem. Soc. Rev., 2010, 39, 4355; (d) L. Malavasi, C. A. J. Fisher
and M. S. Islam, Chem. Soc. Rev., 2010, 39, 4370.
11 (a) A. Shigematsu, T. Yamada and H. Kitagawa, J. Am. Chem. Soc.,
2011, 133, 2034; (b) J. M. Taylor, R. K. Mah, I. L. Moudrakovski,
C. I. Ratcliffe, R. Vaidhyanathan and G. K. H. Shimizu, J. Am. Chem.
Soc., 2010, 132, 14055; (c) T. Yamada, M. Sadakiyo and H. Kitagawa,
J. Am. Chem. Soc., 2009, 131, 3144; (d) M. Yoon, K. Suh, H. Kim,
Y. Kim, N. Selvapalam and K. Kim, Angew. Chem., Int. Ed., 2011,
50, 7870; (e) M. Sadakiyo, T. Yamada and H. Kitagawa, J. Am.
Chem. Soc., 2009, 131, 9906; (f) J. A. Hurd, R. Vaidhyanathan,
V. Thangadurai, C. I. Ratcliffe, I. M. Moudra-kovski and G. K. H.
Shimizu, Nat. Chem., 2009, 1, 705; (g) S. Bureekaew, S. Horike,
M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai and
S. Kitagawa, Nat. Mater., 2009, 8, 831; (h) S. C. Sahoo, T. Kundu and
R. Banerjee, J. Am. Chem. Soc., 2011, 133, 17950.
12 At 95 1C proton conductivity values of In-5TIA (2.7 ꢀ 10ꢁ5 S cmꢁ1
)
and Cd-5TIA (1.15 ꢀ 10ꢁ5 S cmꢁ1) are comparable to those of
PCP*Im (2.2 ꢀ 10ꢁ5 S cmꢁ1 at 120 1C)[11g] and b-PCMOF2*tz
(5 ꢀ 10ꢁ4 S cmꢁ1 at 150 1C).[11f]
.
13 P. Colomban, Proton Conductors: Solids, Membranes and Gels –
Materials and Devices, in Chemistry of Solid State Materials,
Cambridge University Press, Cambridge, UK, 1992, vol. 2.
14 N. G. Hainovsky, Y. T. Pavlukhin and E. F. Hairetdinov, Solid
State Ionics, 1986, 20, 249.
c
5466 Chem. Commun., 2012, 48, 5464–5466
This journal is The Royal Society of Chemistry 2012