900 J. Am. Chem. Soc., Vol. 121, No. 5, 1999
Saltiel et al.
of papers,23 they measured activation enthalpies for the thermal
isomerization of several related polyenes. These activation
enthalpies were used to evaluate the effect of additional
conjugated double bonds on the enthalpies of stabilization, SEn,
of polyenyl radicals of type H(CH)CH)nC˙ H2. The relative
energies of the coplanar polyenes were obtained by applying
an additive constant K ) 3.74 kcal/mol, the Kistiakowski unit,23a
for each conjugative interaction between successive double
bonds. Theory, at all levels employed thus far,24-26 predicts the
linear relationship between the enthalpy of conjugation and the
order of the polyene, but the value of K is empirically derived23a
from thermochemical data on butadiene27 and methyl deriva-
tives28 and on hexa-1,3,5-triene.29 Starting with an allyl
stabilization enthalpy, SE1 ) 13.5 kcal/mol,30 the increase in
stabilization was found to diminish with each successive double
bond.23 Namely, SE2, SE3, and SE4 are 16.9, 19.2, and 20.7
kcal/mol, respectively, such that even the first increment, SE2-
SE1, is a little smaller than K.
Figure 4. Photostationary ratios plotted according to eq 21 and forced
to ∆S* ) 0 intercepts (see text).
The enthalpy of conjugation for a phenyl-vinyl coplanar
interaction, K′ ) 3.5 kcal/mol, has been based on the difference
between the heats of hydrogenation of trans-2-butene and trans-
stilbene.31,32 This value is close to the barrier (∼3.3 kcal/mol)
calculated for the torsion of the phenyl group in trans-stilbene
at the ab initio 3-21G level of theory.33 Provided that K and K′
units be additive, conjugative stabilization energies of the
coplanar all-trans-R,ω-diphenylpolyenes, Ph(CHdCH)nPh, should
be given by 2K′ + (n - 1)K. Experimental validation of this
relationship rests on the stabilization energy of 1,4-diphenyl-
1,3-butadiene, 10.7 kcal/mol,31 which coincides with 2K′ + K
) 10.74 kcal/mol. We therefore take 14.5 kcal/mol as the
conjugative stabilization energy of ttt-DPH. The relative energies
of the biradical transition states for cis-trans isomerization about
a specific bond could be estimated if the stabilization energies
of the resulting pairs of radical moieties were known. The
conjugative stabilization energies of the benzyl, SEBz, and of
the 1-phenylallyl, SEPhA, radicals are required to estimate
ground-state biradical energies for stilbene, 1,4-diphenyl-1,3-
butadiene, and for central bond rotation in ttt-DPH. Recom-
mended CH bond energies34 for ethane and toluene give SEBz
) 12.6 kcal/mol for the benzyl radical, but there is no empirical
SEPhA value for the 1-phenylallyl radical. Figure 5 shows a plot
The Biradicals. The relaxed geometries of the triplet states
of the stilbenes,8,16,17 1,3-dienes,16-18 and related simple alkenes,
generally, correspond to twisted species with orthogonal 2p
orbitals at the relaxation site. They are close in energy and
geometry to the biradical transition states for thermal cis-trans
isomerization.8,17,19 The proximity between S0 and T1 surfaces
at these relaxed geometries leads to rapid T1 f S0 decays and
short triplet lifetimes in the nanosecond time scale. DPH triplets,
on the other hand, have global energy minima at planar
geometries. Decay from these geometries is subject to substantial
S0 - T1 energy gaps leading to a 103-fold longer triplet lifetime.3
The enthalpy differences determined in this work together with
the known 34.0 kcal/mol energy15,20-22 of 3ttt-DPH* locate the
relative energies of the ttt, ctt, tct, and cct isomers on the ground
and triplet energy surfaces. Complete equilibration3 of the
isomeric DPH triplets within the 100 ns triplet lifetime in air-
saturated benzene14,15 requires interconversion rate constants
greater than 108 s-1. Assuming a normal preexponential factor
of 1013 s-1 for these adiabatic unimolecular processes requires
that activation energies for the interconversions be no larger
than 6.9 kcal/mol. This corresponds to a limiting activation
enthalpy of 6.3 kcal/mol at 20 °C and places twisted triplets at
energies no higher than 40.3 kcal/mol relative to the ground
state of ttt-DPH.
(23) (a) Doering, W. von E.; Kitagawa, T. J. Am. Chem. Soc. 1991, 113,
4288-4297. (b) Doering, W. von E.; Birladeanu, L.; Cheng, X-h.; Kitagawa,
T.; Sarma, K. J. Am. Chem. Soc. 1991, 113, 4558-4563. (c) Doering, W.
von E.; Sarma, K. J. Am. Chem. Soc. 1992, 114, 6037-6043. (d) Doering,
W. von E.; Shi, Y.-q.; Zhao, D.-c. J. Am. Chem. Soc. 1992, 114, 10763-
10766.
(24) Heilbronner, E.; Bock, H. Das HMO-Modell und seine Anwendung;
Verlag Chemie: Weinheim, 1970; Vol. 3, pp 16-42.
(25) (a) Dewar, M. J. S.; Gleicher, G. J. J. Am. Chem. Soc. 1965, 87,
685-692. (b) Dewar, M. J. S.; de Liano, C. J. Am. Chem. Soc. 1969, 91,
789-802.
(26) (a) Hess, B. A., Jr.; Schaad, L. V. Pure Appl. Chem. 1980, 52, 1471-
1494. (b) Hess, B. A., Jr.; Schaad, L. J. J. Am. Chem. Soc. 1983, 105,
7500-7505.
(27) Kistiakowsky, G. B.; Ruhoff, J. R.; Smith, H. A.; Vaughan, W. E.
J. Am. Chem. Soc. 1936, 58, 146-153.
(28) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of
Organic Compounds, 2nd ed.; Chapman and Hall: London, 1986.
(29) Turner, R. B.; Mallon, B. H.; Tichy, M.; Doering, W. von E.; Roth,
W. R.; Schro¨der, G. J. Am. Chem. Soc. 1973, 95, 8605-8610.
(30) Doering, W. von. E.; Roth, W. R.; Bauer, F.; Boenke, M.;
Breuckmann, R.; Ruhkamp, J.; Wortmann, O. Chem. Ber. 1991, 124, 1461-
1470.
Since activation enthalpies for tct f ttt and ctt f ttt
isomerizations are not available for DPH, the energies of the
singlet biradicals corresponding to the transition states of these
reactions are unknown. The energy of the symmetrical ortho-
gonal biradical derived by a 90° twist about the central double
bond of ttt-DPH can be estimated by reversing, in part, the
procedure used by Doering and co-workers. In an elegant series
(16) Hammond, G. S.; Saltiel, J.; Lamola, A. A.; Turro, N. J.; Bradshaw,
J. S.; Cowan, D. O.; Vogt, V.; Dalton, C. J. Am. Chem. Soc. 1964, 86,
3197-3217.
(17) Ni, T.; Caldwell, R. A.; Melton, L. A. J. Am. Chem. Soc. 1989,
111, 457-464.
(18) Saltiel, J.; Rousseau, A. D.; Sykes, A. J. Am. Chem. Soc. 1972, 94,
5903-5905.
(19) Unett, D. J.; Caldwell, R. A. Res. Chem. Intermed. 1995, 21, 665-
709.
(20) Heinrich, G.; Holzer, G.; Blume, H.; Schulte-Frohlinde, D. Z.
Naturforsch. 1970, 25b, 496.
(21) Evans, D. F.; Tucker, J. N. J. Chem. Soc., Faraday Trans. 2 1972,
68, 174.
(22) (a) Ramamurthy, V.; Caspar, J. V.; Corbin, D. R.; Schyler, B. D.;
Maki, A. H. J. Phys. Chem. 1990, 94, 3191-3193. (b) Ramamurthy, V.;
Caspar, J. V.; Eaton, D. F.; Kuo, E. W.; Corbin, D. R. J. Am. Chem. Soc.
1992, 114, 3882-3892.
(31) Williams, R. B. J. Am. Chem. Soc. 1942, 64, 1395-1404.
(32) Wheland, G. W. Resonance in Organic Chemistry; Wiley: New
York, 1955; p 80.
(33) Lhost, O.; Bre´das, J. L. J. Chem. Phys. 1992, 96, 5279-5288.
(34) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994, 98,
2744-2765.