compounds 8b and 8c reached or exceeded 4.4, and these values
of 9c-f ranged from 3.4 to 3.9, similar to ezetimibe (Figure 4).
Finally, we established an orally dosed, cholesterol-fed
hamster model as reported in literature to evaluate the in vivo
efficacy of ezetimibe and compound 9e (50 mg/kg/ day), which
displayed promising in vitro potency, nontoxicity and good
partition coefficient.22 The body weight of every group was
monitored throughout the observation period (Figure 5). The
model group gained weight greatly, but ezetimibe even decreased
weight slightly in the first three days. Interestingly, weight
change treated by compound 9e was similar to the one of control
group. At the same time, the ezetimibe treatment reduced total
cholesterol (TC), low-density lipoprotein cholesterol (LDL-C),
free fatty acid (FFA) and triglyceride (TG) by 30.2%, 24.8%,
29.5% and 36.0% respectively in the serum and significantly
increased the proportion of high-density lipoprotein cholesterol
(HDL-C) in TC (56.0%). Compound 9e lowered TC, LDL-C,
FFA and TG by 25.7%, 17.8%, 21.4% and 25.3% in the serum
and the rate of HDL-C to TC was increased to 42.9% (Figure 6
and Figure S4). These results suggested that compound 9e could
regulate the lipid metabolism and inhibit the cholesterol uptake in
vivo. Meanwhile, we measured the content of NO and NOS in the
serum, and these results indicated that compound 9e could
increase NO and (NO synthase) NOS obviously compared with
model group (Figure 6). Accumulating evidence suggested that
the synthesis and release of NO as the endothelium-derived
relaxing factor could maintain the vascular homeostasis.23
Besides these, we detected no obvious alteration of TC and TG in
the liver (Figure S4).
failed to achieve the level of ezetimibe in the in vivo study. The
probable reason for this result could be the rapid glucuronidation
of ezetimibe in the small intestine and liver. It was reported that
phenolic hydroxyl of ezetimibe served as a functional handle for
glucuronidation,24 and this active phenolic glucuronide can limit
systemic excretion by enterohepatic circulation and improve the
oral activity much better than ezetimibe.25 Synthesis and
evaluation of novel 2-azetidinone derivatives with p-
hydroxyphenyl replacing p-nitrophenyl group are underway in
our laboratory and will be reported in due course.
Acknowledgments
This work was supported by the Natural Science Foundation
for Colleges and Universities in Jiangsu Province (No.
11KJB350002), the Natural Science Foundation of Jiangsu
Province (No. BK2012422) and the National Natural Science
Foundation of China (NO. 81202393).
References and notes
1.
2.
John, W. C. Curr. Top. Med. Chem. 2005, 5, 243.
Tonko, D.; Vinay, S.; Christina, L.; Jay, V. P.; Martina, M.; Silva, H.;
Sanja, L. F.; Ivan, H.; Dagmar, K. Bioorg. Med. Chem. 2015, 23, 2353.
Dariusz, S.; Krzysztof; Antoni, S.; Bogusaw, O. Pharmacol. Rep. 2011,
63, 1335.
3.
4.
5.
Constantine, E. K.; William, H. F. Am. J. Ther. 2015, 22, 234.
John, W. C.; Duane, A. B.; Mary, A. C.; Martin, S. D.; Sundeep, D.;
Wayne, V.; Rosy, S.; Margaret, E. B.; Hongrong, Z.; Robert, E. B.;
Brian, S.; Harry, R. D. J. Med. Chem. 1996, 39, 3684.
Liang, G.; Jing, W.; Wei, Q.; Hong-Hua, M.; Jian, C.; Yu-Xiu, Q.; Bo-
Liang, L.; Bao-Liang, S. Cell. Metab. 2008, 7, 508.
Yubin, W.; Huibin, Z.; Wenlong, H.; Jing, K.; Jinpei, Z.; Beibei, Z. Eur.
J. Med. Chem. 2009, 44, 1638.
Yubin, W.; Haiqian; Wenlong, H.; Huibin, Z.; Jinpei, Z. Lett..Drug. Des.
Discov. 2011, 8, 500.
6.
7.
8.
9.
Sundeep, D.; Michael, P.; John W. Clader; Sue-Ing Lin; Razia Rizvi;
Mark E. Snow; Harry R. Davis Jr; McCombie, S. W. Bioorg. Med.
Chem. 1995, 5, 2947.
10. Tobias, R.; Lisbet, K.; Moritz, W.; Helmut, H.; Erick, M. C.
Heterocyclic ring scaffolds as small-molecule cholesterol absorption.
Org. Biomol. Chem. 2005, 3, 3514.
11. Hiroshi, M.; Tsuyoshi, O.; Hiroshi, S.; Yasunori, M.; Akio, O.; Hiroshi,
O. Chem. Pharm. Bull. 2009, 57, 979.
12. Lisbet, K.; Moritz, W.; Helmut, H.; Erick, M. C. J. Med. Chem. 2005,
48, 6035.
13. Tonko, D.; Kresimir, M.; Vinay, S.; Martina, M.; Silva, H.; Jay, V. P.;
Sascha, O.; Sanja, L. F.; Ivan, H.; Dagmar, K. Eur. J. Med. Chem. 2014,
87, 722.
14. Emile, L.; Mariam, M.; Ernest, S. FASEB J. 1995, 9, 626.
15. Alain, T. S.; Daniel, S.; Edgard, D.; Moise, B.; Valerie, M.; Daniel, M.;
Jean-Francois, B.; Emile, L. J. Lipid Res. 2006, 47, 2112.
16. Dan, F.; Lena, O.; Rui-Dong, D. Lipids. Health. Dis. 2010, 9, 40.
17. Jun, D.; Wenxiang, C.; Shu, W.; Jiangtao, Z.; Hongxia, L.; Hanbang, G.;
Yong, M.; Baosheng, C. J. Chromatogr. B. 2007, 858, 239.
18. Joni, J. P.; Anu, T.; Timo, M.; Jukka, M.; Seppo, A. J. Chromatogr. B.
2005, 821, 144.
19. Alawi, A. A.; Richard, H. K. J. Clin. Lipidol. 2009, 3, 138.
20. Albert, L.; Corwin, H.; David, E. Chem. Rev. 1971, 71, 525.
21. Paul, D. L.; Brian, S. Nat. Rev. Drug. Discov. 2007, 6, 881.
22. Brian, G. S.; Harry, R. D.; Robert, E. B.; Duane, A. B.; George, B.;
Mary, A. C.; Anthony, L. C.; Douglas, S. C.; Lizbeth, M. H.; Daniel, G.
M.; Robin, S. P.; April, A. S.; Blair, C. W.; Deborah, L. Z.; John, W. C.;
Edmund, J. S. Atherosclerosis. 1995, 115, 45.
Figure 6. TC (a), TG (b), LDL-C (c), FFA (d), NO (e) and NOS (f) content in
serum of hamsters. These values represented mean ± SD (n=6). #P<0.05 vs
control group; ###P<0.001 vs control group; *P<0.05 vs model group;
**P<0.01 vs model group; ***P<0.001 vs model group.
In summary, with the only marketable cholesterol absorption
inhibitor ezetimibe as the lead, we have synthesized sixteen 2-
azetidinone derivatives and thirteen 1H-pyrrole-2,5-dione
derivatives successfully and most of new compounds exhibited
significant inhibition of cholesterol uptake in Caco-2 cell line, an
in vitro model to mimic intestinal cholesterol absorption. This
was the first time that sulfonamide group was introduced to the
side chain and 1H-pyrrole-2,5-dione was selected as the scaffold.
Furthermore, top six compounds (8b-c and 9c-f) were evaluated
for cytotoxicity and partition coefficient, and 2-azetidinone
analogue 9e was screened out and tested in vivo. Taken together,
compound 9e was confirmed as a potent cholesterol absorption
inhibitor. Though 9e showed great inhibitory effect in vitro, it
23. Seinosuke, K.; Mitsuhiro, Y. Arterioscler. Thromb. Vasc. Biol. 2004, 24,
998.
24. Wayne, D. V.; Harry, R. D. Bioorg. Med. Chem.Lett. 1998, 8, 313.
25. Harry, R. D.; Andrew, M. T.; Joanne, E. T.; Thomas, M. Curr. Opin.
Lipidol. 2011, 22, 467.
Supplementary Material