ORGANIC
LETTERS
2
001
Vol. 3, No. 24
907-3909
A Ruthenium Porphyrin Catalyst
Immobilized in a Highly Cross-linked
Polymer
3
Oliver Nestler and Kay Severin*
Institut de Chimie Min e´ rale et Analytique, EÄ cole Polytechnique F e´ d e´ rale de Lausanne,
1015 Lausanne, Switzerland
Received September 14, 2001
ABSTRACT
An immobilized Ru(meso-tetraarylporphyrin) complex was shown to be a very efficient catalyst for the epoxidation of olefins. In the presence
of HBr, alcohols and even alkanes could be converted to the corresponding ketones. For the latter reactions the polymeric catalyst displayed
a significantly enhanced activity when compared to that of the homogeneous version.
Macroporous, highly cross-linked polymers are excellent
matrices for immobilized transition metal catalysts. As a
result of the permanent pore structure and the high surface
disubstituted pyridine N-oxides as the oxidant, the efficient
conversion of olefins and sulfides to epoxides and sulfoxides
is possible. In the presence of mineral acids even inactivated
alkanes can be oxidized.
2
-1 1
area (typically between 100 and 600 m g ), the acces-
sibility of the catalytically active centers is very good.
Furthermore, a variety of different solvents can be used for
catalysis, whereas for classical Merrifield-type resins solvents
with good swelling abilities are needed. An additional
advantage is that the catalysts are fixed within a very rigid
matrix. As a result, catalyst deactivation by intermolecular
reactions is strongly suppressed. Moreover, the microenvi-
ronment of the catalyst and thus the activity and selectivity
Immobilized ruthenium porphyrin catalysts for alkene
epoxidation have been prepared by Che et al. They have
employed a standard Merrifield resin with covalently attached
6
Ru-porphyrins or a surface modified mesoporous molecular
7
sieve with coordinative bonding to a Ru-porphyrin. In both
(3) For some selected examples see: (a) Clapham, B.; Reger, T. S.; Janda,
K. D. Tetrahedron 2001, 57, 4637-4662 and references therein. (b) Taylor,
R. A.; Santora, B. P.; Gagn e´ , M. R. Org. Lett. 2000, 2, 1781-1783. (c)
Canali, L.; Cowan, E.; Deleuze, H.; Gibson, C. L.; Sherrington, D. C. Chem.
Commun. 1998, 2561-2562. (d) Nozaki, K.; Itoi, Y.; Shibahara, F.;
Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. J. Am. Chem. Soc. 1998,
2
can be modified using the technique of molecular imprinting.
Given these advantages, it is surprising that polymeric
supports of this kind have rarely been employed compared
to other organic matrices.3,4
1
20, 4051-4052. (e) Breysse, E.; Pinel, C.; Lemaire, M. Tetrahedron:
Asymmetry 1998, 9, 897-900. (f) Santora, B. P.; Larsen, A. O.; Gagn e´ , M.
R. Organometallics 1998, 17, 3138-3140. (g) Salvadori, P.; Pini, D.; Petri,
A. J. Am. Chem. Soc. 1997, 119, 6929-6930.
Mimicking natural metalloenzymes, manganese- and iron-
containing porphyrin catalysts have mainly been used for
oxidation reactions, but in recent years Ru(CO)(porphyrin)
(4) For molecularly imprinted polymers with transition metal catalysts
see: (a) Polborn, K.; Severin, K. Chem. Eur. J. 2000, 6, 4604-4611. (b)
Polborn, K.; Severin, K. Eur. J. Inorg. Chem. 2000, 1687-1692. (c) Polborn,
K.; Severin, K. Chem. Commun. 1999, 2481-2482. (d) Locatelli, F.; Gamez,
P.; Lemaire, M. J. Mol. Catal. A 1998, 135, 89-98. (e) Matsui, J.; Nicholls,
I. A.; Karube, I.; Mosbach, K. J. Org. Chem. 1996, 61, 5414-5417.
(5) (a) Gross, Z.; Ini, S. Inorg. Chem. 1999, 38, 1446-1449. (b) Liu,
C.-J., Yu, W.-Y.; Che, C.-M.; Yeung, C.-H. J. Org. Chem. 1999, 64, 7365-
7374. (c) Ohtake, H.; Higushi, T.; Hirobe, M. Heterocycles 1995, 40, 867-
903 and references therein.
5
complexes have received increasing attention. With 2,6-
(
1) Santora, B. P.; Gagn e´ , M. R.; Moloy, K. G.; Radu, N. S. Macro-
molecules 2001, 34, 658-661.
2) Molecularly Imprinted Polymers; Sellergren, B, Ed.; Elsevier: Am-
sterdam, 2001.
(
1
0.1021/ol016754f CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/03/2001