ChemComm
Page 4 of 5
Journal Name
ARTICLE
In the oxidation of isomenthol (11b) (entry 2) the configuration 6. S. Langer, E. Ljungstrom and I. Wangberg, J. Chem. Soc., Faraday
of the stereocenter remained unchanged, while the basic Trans., 1993, 89, 425-431.
substrate 11e gave no product, which is most likely due to an 7. O. Ito, S. Akiho and M. Iino, J. Phys. Chem., 1989, 93, 4079-4083.
DOI: 10.1039/C5CC01580D
acid/base reaction of pyridine with nitric acid that is generated 8. E. Baciocchi, T. D. Giacco, S. M. Murgia and G. V. Sebastiani, J.
¶
•
during this reaction by the H-abstraction by NO or a possible
Chem. Soc., Chem. Commun., 1987, 1246-1248.
3
direct oxidation of the nitrogen of pyridine by the photocatalyst 9. H. Suzuki and T. Mori, J. Chem. Soc., Perkin Trans. 2, 1996, 677-
•
32
or possibly NO (entry 5).
683.
3
1
1
1
0. E. Baciocchi, I. Del Giacco, C. Rol and G. V. Sebastiani,
Tetrahedron Lett., 1985, 26, 541-544.
Conclusions
1. T. Shono, M. Chuankamnerdkarn, H. Maekawa, M. Ishifune and S.
Kashimura, Synthesis, 1994, 895-897.
In conclusion, we described a new and simple access to highly
reactive nitrate radicals using visible light photocatalysis with
an organic dye as the photoredox catalyst. This method avoids
the use of toxic compounds, or high electrochemical potentials
and is, to the best of our knowledge, the first method yielding
2. Andrey A. Fokin, Sergey A. Peleshanko, Pavel A. Gunchenko,
Dmitriy V. Gusev and Peter R. Schreiner, Eur. J. Org. Chem., 2000,
3
357-3362.
1
3. M. Mella, M. Freccero, T. Soldi, E. Fasani and A. Albini, J. Org.
Chem., 1996, 61, 1413-1422.
•
NO3 in a catalytic process using in visible light. We verified
the formation of nitrate radicals by observation of the reduced
1
1
1
1
1
1
4. U. Wille, Chem. Eur. J., 2002, 8, 340-347.
•
catalyst Acr -Mes and showed that the mechanism is
5. U. Wille, J. Am. Chem. Soc., 2001, 124, 14-15.
proceeding via the singlet excited state of the catalyst. By
investigating the addition to aromatic alkynes, a previously well
studied model reaction of NO , we showed that the photo-
catalytic procedure is as efficient as the previously employed
methods.
6. U. Wille, Chem. Rev., 2012, 113, 813-853.
7. U. Wille and L. Lietzau, Tetrahedron, 1999, 55, 11465-11474.
8. U. Wille and L. Lietzau, Tetrahedron, 1999, 55, 10119-10134.
9. L. F. Gamon, J. M. White and U. Wille, Org. Biomol. Chem., 2014,
•
3
12, 8280-8287.
2
2
0. D. C. E. Sigmund and U. Wille, Chem. Commun., 2008, 2121-2123.
1. S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko and
H. Lemmetyinen, J. Am. Chem. Soc., 2004, 126, 1600-1601.
2. K. Ohkubo, K. Mizushima, R. Iwata, K. Souma, N. Suzuki and S.
Fukuzumi, Chem. Commun., 2010, 46, 601-603.
Acknowledgements
Financial
support
by
the
Deutsche
Forschungs-
gemeinschaft (DFG), the GRK 1626 and the Australian
Research Council is acknowledged. TH thanks the Fonds der
Deutschen Chemischen Industrie for a fellowship.
2
2
2
2
2
3. N. A. Romero and D. A. Nicewicz, J. Am. Chem. Soc., 2014, 136
7024–17035.
4. K. Ohkubo, K. Mizushima and S. Fukuzumi, Res. Chem. Intermed.,
013, 39, 205-220.
5. S. Fukuzumi, K. Ohkubo and T. Suenobu, Acc. Chem. Res., 2014, 47
455-1464.
,
1
Notes and references
a
Institut für Organische Chemie, Universität Regensburg,
2
Universitätsstrasse 31, D-93053 Regensburg, Germany.
,
b
School of Chemistry and BIO21 Molecular Science and Biotechnology
1
Institute, The University of Melbourne, 30 Flemington Road, Parkville,
6. A. C. Benniston, A. Harriman, P. Li, J. P. Rostron, H. J. van
Ramesdonk, M. M. Groeneveld, H. Zhang and J. W. Verhoeven, J.
Am. Chem. Soc., 2005, 127, 16054-16064.
VIC 3010, Australia.
+
†
After aeration the ground state absorption of Acr -Mes cannot be fully
recovered (see Supporting Information).
‡
§
For the mechanism of this reaction see SI.
The addition of different bases (LiNO
27. U. Wille and J. Andropof, Aust. J. Chem., 2007, 60, 420-428.
3
, LiOAc, pyridine, lutidine) did 28. A. C. Benniston, K. J. Elliott, R. W. Harrington and W. Clegg, Eur.
not influence the outcome of the reaction or the stability of the catalyst.
J. Org. Chem., 2009, 253-258.
¶
based on the assumption that both the initial hydrogen abstraction and 29. S. Langer and E. Ljungstrom, J. Chem. Soc., Faraday Trans., 1995,
the oxidation of 12 are done by nitrate radicals.
91, 405-410.
3
0. D. Kyriacou, Modern Electroorganic Chemistry, Springer-Verlag,
1
2
.
.
R. P. Wayne, I. Barnes, P. Biggs, J. P. Burrows, C. E. Canosa-Mas, J.
Berlin, Heidelberg, 1994.
Hjorth, G. Le Bras, G. K. Moortgat, D. Perner, G. Poulet, G. Restelli 31. S. A. Styler and D. J. Donaldson, Environment. Sci. Techn., 2011, 45
,
and H. Sidebottom, Atmospheric Environment. Part A. General
Topics, 1991, 25, 1-203.
10004-10012.
32. A. Thellend, P. Battioni, W. Sanderson and D. Mansuy, Synthesis
,
M. P. Pérez-Casany, I. Nebot-Gil, J. Sánchez-Marín, F. Tomás-Vert,
E. Martínez-Ataz, B. Cabañas-Galán and A. Aranda-Rubio, J. Org.
Chem., 1998, 63, 6978-6983.
1997, 1387-1388.
3
4
5
.
.
.
H. Gong, A. Matsunaga and P. J. Ziemann, J. Phys. Chem. A, 2005,
1
09, 4312-4324.
J. C. Harrison and J. R. Wells, Int. J. Chem. Kinet., 2012, 44, 778-
88.
D. Rousse and C. George, Phys. Chem. Chem. Phys., 2004,
414.
7
6
, 3408-
3
4
| J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 2012