Oxidation of Aromatic Alkynes
427
The respective peak area correction factors for 9b–9h, 10b–
[7] T. Shono, Electroorganic Chemistry as a New Tool in Organic
Synthesis 1984 (Springer: Berlin).
1
0h and 11b–11h, fGC(b-h), were then determined from this
[
8] O. Ito, S. Akiho, M. Iino, J. Org. Chem. 1989, 54, 2436.
correlation factor according to fGC(b−h) = fc × fECAN(b−h).
doi:10.1021/JO00271A038
[9] We have also studied the reaction of NO• with mixed aryl–alkyl,
•
Reaction of 9a with Photogenerated NO (Typical
3
3
dialkyl, and terminal aromatic alkynes. However, numerous products
were obtained in each case, which were not further investigated.
Experimental Procedure)
In a pyrex test tube equipped with a rubber septum and an argon
balloon, 90 mg (164 µmol) CAN and 9.9 mg (55 µmol) 9a were
dissolved in 10 mL of acetonitrile and degassed in an ultrasound
bath for 10 min under a constant flow of argon. With argon
gas flowing, the sample was fixed at the cooling mantle of the
lamp with rubber bands and irradiated for 80 min. The irradi-
ation time was shorter (20–30 min), when smaller amounts of
CAN were used. After addition of a weighed amount of standard
•
3
[
10] The very low yield obtained in the reaction of NO of with 9h could be
explained by a competing direct one electron oxidation of the electron-
•
3
rich aromatic rings by NO .
[11] E. Baciocchi, T. Del Giacco, S. M. Murgia, G. V. Sebastiani, J. Chem.
Soc. Chem. Commun. 1987, 1246. doi:10.1039/C39870001246
12] U. Wille, Org. Lett. 2000, 2, 3485. doi:10.1021/OL006527Y
13] (a) E. G. Lewars, Chem. Rev. 1983, 83, 519. doi:10.1021/
CR00057A002
[
[
(
b) J. E. Fowler, J. M. Galbraith, G. Vacek, H. F. Schaefer, III, J. Am.
Chem. Soc. 1994, 116, 9311. doi:10.1021/JA00099A057
c) M. Torres, J. L. Bourdelande, A. Clement, O. P. Strausz, J. Am.
(
n-hexadecane), the solution was poured into brine and extracted
with diethyl ether. The combined organic fractions were dried
over MgSO4, concentrated, and analyzed by GC.
(
Chem. Soc. 1983, 105, 1698. doi:10.1021/JA00344A072
14] M. J. Frisch, G. W.Trucks, H. B. Schlegel, G. E. Scuseria, M.A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Men-
nucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J.V. Ortiz, Q. Cui,A. G. Baboul, S. Clif-
ford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.Y.
Peng,A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision
D.01 2004, (Gaussian, Inc.: Wallingford, CT).
[
•
Reaction of 9a with Electrogenerated NO (Typical
Experimental Procedure)
3
3
47 mg (5.03 mmol) LiNO3 and 358 mg (2.01 mmol) 9a were
dissolved in 50 mL of acetonitrile/water/MTBE (7/1/2) and elec-
trolyzed until TLC showed complete consumption of 9a (2 h).
After addition of a weighed amount of standard (n-hexadecane),
the solution was poured into brine and extracted with diethyl
ether. The combined organic fractions were dried over MgSO4,
concentrated and analyzed by GC.
The accessory publication is available from the author or, until
June 2012, the Australian Journal of Chemistry.
Acknowledgments
[15] (a)T.W. Koenig,T. Barklow,Tetrahedron 1969, 25, 4875. doi:10.1016/
S0040-4020(01)83028-3
This work was supported by theAustralian Research Council under theARC
Centres of Excellence program, theVictorian Institute for Chemical Sciences
High Performance Computing Facility, and the Australian Partnership for
Advanced Computing. We thank Hakki Turupçu and Christine Duke for
their support.
(
b) S. Dayan, I. Ben-David, S. Rozen, J. Org. Chem. 2000, 65, 8816.
doi:10.1021/JO001101I
[
[
16] U. Wille, J. Org. Chem. 2006, 71, 4040. doi:10.1021/JO0520543
17] The geometries computed at the various levels of theory were found
to vary only insignificantly.
[
18] Computations performed by us have shown that the E-configured
References and Notes
−1
vinyl radical 12i is less stable by about 4 kJ mol than the Z isomer:
[
1] (a) U. Wille, L. Lietzau, Tetrahedron 1999, 55, 10119. doi:10.1016/
(a) U. Wille, T. Dreessen, J. Phys. Chem. A 2006, 110, 2195.
doi:10.1021/JP0454772J.
S0040-4020(99)00564-5
(
(
b) U. Wille, L. Lietzau, Tetrahedron 1999, 55, 11456.
c) L. Lietzau, U. Wille, Heterocycles 2001, 55, 377.
(b) J. Fossey, D. Lefort, J. Sorba, Free Radicals in Organic Chemistry
1995 (John Wiley & Sons: Chichester). For convenience, we have
used in this work the E-configured vinyl radical 12i as energetic ref-
erence, because no configurational change at the C=C double bond
is required in going from 12i to 14i via transition state 13i.
[
2] (a) U. Wille, Chem. Eur. J. 2002, 8, 340. doi:10.1002/1521-
765(20020118)8:2<340::AID-CHEM340>3.0.CO;2-4
b) T. Dreessen, C. Jargstorff, L. Lietzau, C. Plath, A. Stademann, U.
3
(
Wille, Molecules 2004, 9, 480.
[19] Solvation effects, which were calculated using the PCM model as
implemented in Gaussian03 did not result in significant changes of
the barrier heights of any transition state 13 and 16, respectively.
[20] G. S. Hammond, J. Am. Chem. Soc. 1955, 77, 334. doi:10.1021/
JA01607A027
[21] This rearrangement has been calculated using methods involving
high levels of electron correlation and basis sets; see for example:
(a) A. P. Scott, R. H. Nobes, H. F. Schaefer, III, L. Radom, J. Am.
Chem. Soc. 1994, 116, 10159. doi:10.1021/JA00101A039
(b) P. J. Wilson, D. J. Tozer, Chem. Phys. Lett. 2002, 352, 540.
doi:10.1016/S0009-2614(01)01496-8
[
[
3] L. Lietzau, Ph.D. Thesis 1999 (University of Kiel: Kiel).
4] (a) N. S. Srinivasan, D. G. Lee, J. Org. Chem. 1979, 44, 1574.
doi:10.1021/JO01323A049
(
b) D. G. Lee, V. S. Chang, W. D. Chandler, J. Org. Chem. 1985, 50,
306, doi:10.1021/JO00222A021
c) Z. L. Zhu, J. H. Espenson, J. Org. Chem. 1995, 60, 7728.
doi:10.1021/JO00129A010
d) M. S. Yusubov, G. A. Zholobova, S. F. Vasilevsky, E. V. Tretyakov,
D. W. Knight, Tetrahedron 2002, 58, 1607. doi:10.1016/S0040-
020(02)00025-X
4
(
(
4
[
[
5] U. Wille, C. Plath, Liebigs Ann./Recueil 1997, 111, and references
therein.
6] Mass Spectra in NIST Chemistry WebBook, NIST Standard Refer-
ence Database Number 69 (Eds P. J. Linstrom, W. G. Mallard) 2005
(c) G. Vacek, J. M. Galbraith, Y. Yamaguchi, H. F. Schaefer, III,
R. H. Nobes, A. P. Scott, L. Radom, J. Phys. Chem. 1994, 98, 8660.
doi:10.1021/J100086A013
•
[22] We did not investigate whether the reaction of NO with alkynes in the
3
•
2
(
National Institute of Standards and Technology: Gaithersburg, MD).
presence of excess NO leads to exclusive formation of 1,2-diketones,
in order to support the assumed reversibility of the γ-fragmentation