Organic Letters
Letter
amide cross-coupling, see: (b) Ruider, S. A.; Maulide, N. Angew. Chem.,
Int. Ed. 2015, 54, 13856.
at the amide oxygen (vs amide nitrogen, ΔPA = 21.4, 11.0
kcal/mol). However, protonation of the ring nitrogen is
(7) For representative examples of N−C activation, see: (a) Blakey, S.
B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 6046. (b) Buszek, K.
R.;Brown, N. Org. Lett. 2007, 9, 707.(c)Maity, P.;Shacklady-McAtee, D.
M.; Yap, G. P. A.; Sirianni, E. R.; Watson, M. P. J. Am. Chem. Soc. 2013,
135, 280. (d) Tobisu, M.; Nakamura, K.; Chatani, N. J. Am. Chem. Soc.
2014, 136, 5587. (e) Zhang, H.; Hagihara, S.; Itami, K. Chem. - Eur. J.
2015,21,16796. (f)Basch, C. H.;Liao, J.;Xu, J.;Piane, J. J.;Watson, M.P.
J. Am. Chem. Soc. 2017, 139, 5313.
(8) (a) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, M. J. Org.
Chem. 2016, 81, 8091. (b) Pace, V.; Holzer, W.; Meng, G.; Shi, S.;
Lalancette, R.; Szostak, R.; Szostak, M. Chem. - Eur. J. 2016, 22, 14494.
(c) See ref 1b.
favored in 1k and 1m (ΔPA = 13.1, 26.1 kcal/mol).
Overall, the structural and energetic parameters of the amide
bond combined with kinetic studies suggest that (1) N−C
activation is not the rate limiting step in the coupling; (2)
electronic destabilization of nN → π*CO conjugation enables
selective N−C activation in N-acylpyrroles and pyrazoles.
In summary, we have achieved the first catalytic C−C bond
formation from planar amides enabled by electronic activation of
the amide N atom in N-acylpyrroles and pyrazoles. The method is
operationally convenient and exploits N-acylpyrroles as Weinreb
amideequivalents. ThesefindingshighlighttheutilityofPd-NHC
catalysis14 in selective activation of inert amide N−C bonds. The
direct synthesis of N-acylpyrroles from primary amides opens the
doorforcatalyticcouplingofunactivatedprimaryamidesbymetal
catalysis. Most importantly, the study provides an avenue for a
plethora of catalytic cross-coupling reactions via acyl-metal
intermediates from planar, electronically activated amides.
(9)Selectedexamples:(a)Hie, L.;Nathel, N. F.F.;Shah,T. K.;Baker, E.
L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015,
524, 79. (b) Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2015, 8,
75. (c)Simmons,B. J.;Weires, N. A.;Dander, J. E.;Garg,N. K. ACSCatal.
2016, 6, 3176. (d)Baker, E. L.;Yamano, M. M.;Zhou, Y.;Anthony, S. M.;
Garg, N. K. Nat. Commun. 2016, 7, 11554. (e) Dander, J. E.; Weires, N.
A.;Garg,N. K.Org.Lett. 2016,18,3934. (f)Hie, L.;Baker, E.L.;Anthony,
S. M.;Desrosiers, J. N.;Senanayake, C.;Garg, N. K. Angew. Chem., Int. Ed.
2016, 55, 15129. (g) Li, X.; Zou, G. Chem. Commun. 2015, 51, 5089.
(h) Meng, G.; Szostak, M. Org. Lett. 2015, 17, 4364. (i) Meng, G.;
Szostak, M. Org. Biomol. Chem. 2016, 14, 5690. (j) Shi, S.; Szostak, M.
Chem. - Eur. J. 2016, 22, 10420. (k) Meng, G.; Szostak, M. Angew. Chem.,
Int. Ed. 2015, 54, 14518. (l) Shi, S.; Meng, G.; Szostak, M. Angew. Chem.,
Int. Ed. 2016, 55, 6959. (m) Meng, G.; Szostak, M. Org. Lett. 2016, 18,
796. (n) Meng, G.; Shi, S.; Szostak, M. ACS Catal. 2016, 6, 7335. (o) Shi,
S.; Szostak, M. Org. Lett. 2016, 18, 5872. (p) Liu, C.; Meng, G.; Liu, Y.;
Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2016, 18, 4194.
(q) Liu, C.; Meng, G.; Szostak, M. J. Org. Chem. 2016, 81, 12023. (r) Lei,
P.; Meng, G.; Szostak, M. ACS Catal. 2017, 7, 1960. (s) Liu, C.; Liu, Y.;
Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19, 1434.
(t) Meng, G.; Lei, P.; Szostak, M. Org. Lett. 2017, 19, 2158. (u) Shi, S.;
Szostak, M. Org. Lett. 2017, 19, 3095. (v) Hu, J.; Zhao, Y.; Liu, J.; Zhang,
Y.; Shi, Z. Angew. Chem., Int. Ed. 2016, 55, 8718. (w) Cui, M.; Wu, H.;
Jian, J.; Wang, H.; Liu, C.; Daniel, S.; Zeng, Z. Chem. Commun. 2016, 52,
12076. (x) Wu, H.;Liu, T.;Cui, M.;Li, Y.;Jian, J.;Wang, H.;Zeng, Z. Org.
Biomol. Chem. 2017, 15, 536. (y) Liu, L.; Chen, P.; Sun, Y.; Wu, Y.; Chen,
S.; Zhu, J.; Zhao, Y. J. Org. Chem. 2016, 81, 11686. (z) Yue, H.; Guo, L.;
Liao, H. H.; Cai, Y.; Zhu, C.; Rueping, M. Angew. Chem., Int. Ed. 2017, 56,
4282. (aa)Yue, H.;Guo, L.;Lee, S.C.;Liu, X.;Rueping, M. Angew. Chem.,
Int. Ed. 2017, 56, 3972. (ab) Amani, J.; Alam, R.; Badir, S.; Molander, G.
A. Org. Lett. 2017, 19, 2426. (ac) Hu, J.; Wang, M.; Pu, X.; Shi, Z. Nat.
Commun. 2017, 8, 14993. (ad) Ni, S.; Zhang, W.; Mei, H.; Han, J.; Pan, Y.
Org. Lett. 2017, 19, 2536. (ae) Srimontree, W.; Chatupheeraphat, A.;
Liao, H. H.; Rueping, M. Org. Lett. 2017, 19, 3091.
ASSOCIATED CONTENT
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
■
S
Experimental procedures and characterization data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by Rutgers University. The
Bruker 500 MHz spectrometer used in this study was supported
by an NSF-MRI grant (CHE-1229030). We thank the Wrocław
Center for Networking and Supercomputing (grant number
WCSS159).
(10) Dey, A.; Sasmal, S.; Seth, K.; Lahiri, G. K.; Maiti, D. ACS Catal.
2017, 7, 433.
(11) Evans, D. A.; Borg, G.; Scheidt, K. A. Angew. Chem., Int. Ed. 2002,
41, 3188 and references cited therein.
REFERENCES
■
(1) Reviews on N−C amide cross-coupling: (a) Meng, G.; Shi, S.;
Szostak, M. Synlett 2016, 27, 2530. (b) Liu, C.; Szostak, M. Chem. - Eur. J.
2017, 23, 7157. (c) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413.
(2) (a) Metal-Catalyzed Cross-Coupling Reactions and More; de Meijere,
(12) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(13) (a) Ekkati, A. R.; Bates, D. K. Synthesis 2003, 1959. (b) Goldys, A.
M.; McErlean, C. S. P. Eur. J. Org. Chem. 2012, 2012, 1877.
(14) (a) Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151.
(b) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan,
S. P. J. Am. Chem. Soc. 2006, 128, 4101.
(15) Bennet, A. J.; Somayaji, V.; Brown, R. S.; Santarsiero, B. D. J. Am.
Chem. Soc. 1991, 113, 7563.
(16) Staab, H. A. Angew. Chem., Int. Ed. Engl. 1962, 1, 351.
(17) Liu, Y.; Shi, S.; Achtenhagen, M.; Liu, R.; Szostak, M. Org. Lett.
2017, 19, 1614.
(18) Nishihara, Y. Applied Cross-Coupling Reactions; Springer:
Heidelberg, 2013.
(19) Greenberg, A.; Venanzi, C. A. J. Am. Chem. Soc. 1993, 115, 6951.
(20) Unproductive reactivity of 1m is consistent with rapid dissociation
of imidazole upon N-coordination.
A., Brase, S., Oestreich, M., Eds.; Wiley: New York, 2014. (b) Science of
̈
Synthesis: Cross-Coupling and Heck-Type Reactions; Molander, G. A.,
Wolfe, J. P., Larhed, M., Eds.; Thieme: Stuttgart, 2013.
(3) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Chem. Sci. 2012, 3, 2671.
(4) (a) Greenberg, A.; Breneman, C. M.; Liebman, J. F., Eds. The Amide
Linkage: Structural Significance in Chemistry, Biochemistry, and Materials
Science; Wiley: New York, 2000. Pharmaceuticals:. (b) Roughley, S. D.;
Jordan,A. M. J. Med.Chem. 2011, 54,3451. Polymers:(c)Marchildon, K.
Macromol. React. Eng. 2011, 5, 22. Peptides: (d) Pattabiraman, V. R.;
Bode, J. W. Nature 2011, 480, 471.
(5) Johansson-Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
(6) Review on electrophilic activation of amides: (a) Kaiser, D.;
Maulide, N. J. Org. Chem. 2016, 81, 4421. For an excellent overview of
D
Org. Lett. XXXX, XXX, XXX−XXX