ACS Catalysis
Letter
G. A., Wolfe, J. P., Larhed, M., Eds.; Thieme: Stuttgart, Germany,
2013. (c) Johansson-Seechurn, C. C. C.; Kitching, M. O.; Colacot, T.
J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062−5085.
(2) (a) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555−1564. (b) Martin,
R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461−1473. (c) Li, H.;
Johansson-Seechurn, C. C. C.; Colacot, T. J. ACS Catal. 2012, 2,
1147−1164. (d) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27−
50. (e) Niemeyer, Z. L.; Milo, A.; Hickey, D. P.; Sigman, M. S. Nat.
Chem. 2016, 8, 610−617. (f) Souillart, L.; Cramer, N. Chem. Rev.
2015, 115, 9410−9464.
(3) (a) Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151−
5169. (b) N-Heterocyclic Carbenes; Nolan, S. P., Ed.; Wiley: Weinheim,
Germany, 2014. (c) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Chem.
Rev. 2009, 109, 3612−3676. (d) N-Heterocyclic Carbenes in Transition
Metal Catalysis; Cazin, C. S. J., Ed.; Springer: New York, 2011.
methods for catalytic activation of the amide N−C bond
unattainable by Pd-PR3 systems.
Resonance energies of amides 1a−1c have been quantifie-
d.18a,b The observed selectivity provides strong support for the
development of a unified reactivity scale of the amide bond for
the generation of acyl-metal intermediates (see Scheme 1). A
good correlation between the amide N−C bond reactivity and
the N−C(O) bond resonance is observed.26,27 Since anilides
are recovered unchanged under Pd-NHC conditions, this
finding highlights the potential for selective amide bond
resonance fine-tuning to a desired reagent system.18,19 Further
development of a unified reactivity scale of amide bonds will
deliver enhanced guidelines for the use of amides undergoing
previously elusive cross-coupling reactions.
In summary, we have described the first direct Suzuki−
Miyaura cross-coupling of amides catalyzed by Pd-NHC
complexes. The cross-coupling of different classes of amides
is promoted by a single, commercially available, air- and
moisture-stable (NHC)Pd(R-allyl)Cl precatalyst. The versatile
method shows broad scope, with respect to both the boronic
acid and amide components. The Pd-NHC catalysts described
show a substantial improvement over Pd-PR3 systems
employed for the amide N−C bond activation. The versatile
properties of Pd-NHC complexes render them attractive
catalysts for amide N−C bond activation. A unified reactivity
scale of the amide bond for the generation of acyl-metal
intermediates has been presented. We anticipate that this study
will find broad applications in organic synthesis. Further studies
on the development of improved catalyst systems are currently
underway in our laboratory.
(e) Glorius, F. Top. Organomet. Chem. 2007, 21, 1−231. (f) Wurtz, S.;
̈
Glorius, F. Acc. Chem. Res. 2008, 41, 1523−1533. (g) Hopkinson, M.
N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485−496.
(h) Kantchev, E. A. B.; O’Brien, C. J. O.; Organ, M. G. Angew. Chem.,
Int. Ed. 2007, 46, 2768−2813. (i) Valente, C.; Calimsiz, S.; Hoi, K. H.;
Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51,
3314−3332. (j) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41,
1290−1309.
(4) (a) Nelson, D. J.; Nolan, S. P. Chem. Soc. Rev. 2013, 42, 6723−
6753. (b) Clavier, H.; Nolan, S. P. Chem. Commun. 2010, 46, 841−
861. (c) Diez-Gonzalez, S.; Nolan, S. P. Coord. Chem. Rev. 2007, 251,
874−883. (d) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.;
Cavallo, L. Coord. Chem. Rev. 2009, 253, 687−703. (e) Droge, T.;
̈
Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 6940−6952.
(5) For select examples, see: (a) Herrmann, W. A.; Elison, M.;
Fischer, J.; Kocher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. 1995,
̈
34, 2371−2374. (b) Huang, J.; Nolan, S. J. Am. Chem. Soc. 1999, 121,
9889−6890. (c) Gstottmayr, C. W. K.; Bohm, V. P. W.; Herdtweck, E.;
Grosche, M.; Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1363−
1365. (d) Navarro, O.; Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc.
2003, 125, 16194−16195. (e) O’Brien, C. J.; Kantchev, E. A. B.;
Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.;
Organ, M. C. Chem.Eur. J. 2006, 12, 4743−4748. (f) Luan, X.;
Mariz, R.; Gatti, M.; Costabile, C.; Poater, A.; Cavallo, L.; Linden, A.;
Dorta, R. J. Am. Chem. Soc. 2008, 130, 6848−6858.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Procedures and analytical data (PDF)
(6) For reviews on N−C activation in amides, see: (a) Meng, G.; Shi,
S.; Szostak, M. Synlett 2016, 27, 2530−2540. (b) Liu, C.; Szostak, M.
(c) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413−1423.
(7) (a) Cornella, J.; Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43,
8081−8097. (b) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48,
1717−1726.
AUTHOR INFORMATION
Corresponding Author
ORCID
■
(8) (a) Ouyang, K.; Hao, W.; Zhang, W. X.; Xi, Z. Chem. Rev. 2015,
115, 12045−12090. (b) Wang, Q.; Su, Y.; Li, L.; Huang, H. Chem. Soc.
Rev. 2016, 45, 1257−1272. (c) See ref 6.
Present Address
†Department of Applied Chemistry, College of Science, China
Agricultural University, Beijing 100193, PRC.
(9) (a) Gooßen, L. J.; Rodriguez, N.; Gooßen, K. Angew. Chem., Int.
Ed. 2008, 47, 3100−3120. (b) Dzik, W.; Lange, P.; Gooßen, L. Chem.
Sci. 2012, 3, 2671−2678. (c) Muto, K.; Yamaguchi, J.; Musaev, D. G.;
Itami, K. Nat. Commun. 2015, 6, 7508 1−8.
(10) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide
Linkage: Structural Significance in Chemistry, Biochemistry and Materials
Science; Wiley−VCH: New York, 2003.
(11) Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.;
Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79−
83.
(12) (a) Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2015, 8,
75−79. (b) Simmons, B. J.; Weires, N. A.; Dander, J. E.; Garg, N. K.
ACS Catal. 2016, 6, 3176−3179. (c) Baker, E. L.; Yamano, M. M.;
Zhou, Y.; Anthony, S. M.; Garg, N. K. Nat. Commun. 2016, 7, 11554.
(d) Dander, J. E.; Weires, N. A.; Garg, N. K. Org. Lett. 2016, 18,
3934−3936. (e) Hie, L.; Baker, E. L.; Anthony, S. M.; Desrosiers, J. N.;
Senanayake, C.; Garg, N. K. Angew. Chem., Int. Ed. 2016, 55, 15129−
15132.
Author Contributions
‡Both authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by Rutgers University. The 500
MHz spectrometer used in this study was supported by the
NSF-MRI (Grant No. CHE-1229030). P.L. thanks the China
Scholarship Council (No. 201606350069) for a fellowship.
REFERENCES
■
(1) (a) Metal-Catalyzed Cross-Coupling Reactions and More; de
Meijere, A., Brase, S., Oestreich, M., Eds.; Wiley: New York, 2014. (b)
̈
Science of Synthesis: Cross-Coupling and Heck-Type Reactions; Molander,
1964
ACS Catal. 2017, 7, 1960−1965