NICKEL–MOLYBDENUM SULFIDE NAPHTHALENE HYDROGENATION CATALYSTS
599
NiMoS [8, 19–21]. The deconvolution of the
Ni 2p level showed that more than 75% of nickel is in
the sulfide environment, where 65% of the nickel is
part of the NiMoS phase and as little as 10% is in the
form of nickel sulfides; this finding indicates a high
degree of promotion with nickel in the molybdenum
disulfide crystallites.
6. N. Panariti, A. Del Bianco, G. Del Pieroa, M. Mar-
chionna, and P. Carniti, Appl. Catal., A 204, 215
2000).
(
7. H. Topsoe, B. S. Clausen, and F. E. Massoth, Hydro-
treating Catalysts: Science and Technology (Springer,
Berlin, 1996).
8
. T. K. T. Ninh, L. Massin, D. Laurenti, and M. Vrinat,
Appl. Catal., A 407, 29 (2011).
The sulfur present on the catalyst surface can be in
2
–
9. W. Lai, Z. Chen, J. Zhu, L. Yang, J. Zheng, X. Yi, and
W. Fang, Nanoscale 8, 3823 (2016). doi 10.1039/
C5NR08841K
the form of both sulfur S (MoS , NiS, NiMoS
2
2
−
phases) and the S phase (MoO S ) [8]. The presence
2
x y
of a peak in the region of 167–169 eV [22] suggests that 10. H. Yin, T. Zhou, and X. Liu, J. Porous Mater. 22, 1291
(2015).
the amount of sulfur in the sulfate state is small (no
more than 9%).
11. H. Liu, C. Yin, B. Liu, X. Li, Y. Li, Y. Chai, and C. Liu,
Energy Fuels 28, 2429 (2014).
Thus, Ni–Mo sulfide catalysts have been synthe-
sized by the in situ decomposition of oil-soluble precur-
sors molybdenum hexacarbonyl and nickel(II) 2-ethyl-
hexanoate. The resulting catalysts exhibit high activity
in the hydrogenation of aromatic hydrocarbons, in par-
ticular, naphthalene. At a reaction time of 5 h, a reac-
tion temperature of 350°C, and an initial hydrogen
pressure of 7.0 MPa, the naphthalene conversion
achieves 99%, while the decalin selectivity is 30%.
1
2. M. D. Navalikhina and O. V. Krylov, Russ. Chem. Rev.
7, 587 (1998).
3. B. Yoosuk, D. Tumnantong, and P. Prasassarakich,
Fuel 91, 246 (2012).
6
1
1
4. P. Gajardo, A. Mathieux, P. Grange, and B. Delmon,
Appl. Catal., A 3, 347 (1982).
1
5. B. Yoosuk, J. H. Kim, C. Song, C. Ngamcharussrivi-
chai, and P. Prasassarakich, Catal. Today 130, 14
(2008).
1
6. A. D. Gandubert, C. Legens, D. Guillaume, and
ACKNOWLEDGMENTS
E. Payen, Surf. Interface Anal. 38, 206 (2006).
1
7. Transition Metal Sulphides: Chemistry and Catalysis, Ed.
by T. Weber, R. Prins, and R. A. van Santen (Springer
Science & Business Media, Dordrecht, 2013).
This work was supported by the Russian Science
Foundation, agreement no. 15-13-00123.
1
8. A. D. Gandubert, C. Legens, D. Guillaume,
S. Rebours, and E. Payen, Oil Gas Sci. Technol. Rev.
IFP 62, 79 (2007).
REFERENCES
. S. Eijsbouts, S. W. Mayo, and K. Fujita, Appl. Catal., A
1
2
3
4
19. S. Houssenbay, S. Kasztelan, H. Toulhoat, J. P. Bon-
3
22, 58 (2007).
nelle, and J. Grimblot, J. Phys. Chem. 93, 7176 (1989).
. S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva,
Pet. Chem. 54, 323 (2014).
. I. A. Sizova, A. B. Kulikov, M. I. Onishchenko, and
S. I. Serdyukov, Pet. Chem. 56, 44 (2016).
20. K. Marchand, C. Legens, D. Guillaume, and P. Ray-
baud, Oil Gas Sci. Technol. Rev. IFP 64, 719 (2009).
21. B. Guichard, M. Roy-Auberger, E. Devers, C. Legens,
and P. Raybaud, Catal. Today 130, 97 (2008).
. G. Bellussi, G. Rispoli, D. Molinari, A. Landoni,
P. Pollesel, N. Panariti, R. Millini, and E. Montanari, 22. D. Zuo, M. Vrinat, H. Nie, F. Mauge, Y. Shi, M. Lac-
Catal. Sci. Technol 3, 176 (2013).
roix, and D. Li, Catal. Today 93–95, 751 (2004).
5
. T. Cyr, L. K. Lee, L. Lewkowicz, R. K. Lott, and
B. Ozum, US Patent No. 5 578 197 (1996).
Translated by M. Timoshinina
PETROLEUM CHEMISTRY Vol. 57 No. 7 2017