1042
Z.-C. Ding et al.
LETTER
Cl
F
F
N
S
Cl
N
S
K2CO3
CONH2
O
F
N
+
DMF, r.t., 2 h
X
N
HO
F
NH2
O
2a, X = Cl
2b, X = Br
2c, X = I
PC190723, 1
3
Scheme 5 The synthesis of PC190723
(2) Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher,
H. W.; Scheld, W. M.; Bartlett, J. G.; Edwards, J. Jr. Clin.
Infect. Dis. 2008, 46, 155.
(3) (a) Lock, R. L.; Harry, E. J. Nat. Rev. Drug Discovery 2008,
7, 324. (b) Vollmer, W. Appl. Microbiol. Biotechnol. 2006,
73, 37.
(4) (a) Mathew, B.; Srivastava, S.; Ross, L. J.; Suling, W. J.;
White, E. L.; Woolhiser, L. K.; Lenaerts, A. J.; Reynolds, R.
C. Bioorg. Med. Chem. 2011, 19, 7120. (b) Czaplewski, L.
G.; Collins, I.; Boyd, E. A.; Brown, D.; East, S. P.; Gardiner,
M.; Fletcher, R.; Haydon, D. J.; Henstock, V.; Ingram, P.;
Jones, C.; Noula, C.; Kennison, L.; Rockley, C.; Rose, V.;
Thomaides-Brears, H. B.; Ure, R.; Whittaker, M.; Stokes, N.
R. Bioorg. Med. Chem. Lett. 2009, 19, 524. (c) Margalit, D.
N.; Romberg, L.; Mets, R. B.; Hebert, A. M.; Mitchison, T.
J.; Kirschner, M. W.; RayChaudhuri, D. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 11821.
taking advantage of the higher reactivity of bromide 2b,
0.2 equivalent of NaI was used in the reaction with 3 in a
K2CO3/DMF system, which led to a marked improvement
in the efficiency of the reaction (36% yield). The improve-
ment prompted us to use 2c in the same reaction system,
which led to a further enhancement in the yield of 1 to
56%, although the preparation of 2c was more expensive
than those of 2a and 2b. Fortunately, in the course of the
optimization of the reaction conditions, we observed that
the yields improved when different base and solvent sys-
tems were used. By using K2CO3 as base in acetonitrile at
room temperature, the reaction of 2a and 3 catalyzed by
0.2 equivalent of NaI resulted in a marked improvement
in the efficiency of this reaction, and 1 was obtained in
79% yield.10
(5) (a) Haydon, D. J.; Bennett, J. M.; Brown, D.; Collins, I.;
Galbraith, G.; Lancett, P.; Macdonald, R.; Stokes, N. R.;
Chauhan, P. K.; Sutariya, J. K.; Nayal, N.; Srivastava, A.;
Beanland, J.; Hall, R.; Henstock, V.; Noula, C.; Rockley, C.;
Czaplewski, L. J. Med. Chem. 2010, 53, 3927. (b) Haydon,
D. J.; Stokes, N. R.; Ure, R.; Galbraith, G.; Bennett, J. M.;
Brown, D. R.; Baker, P. J.; Barynin, V. V.; Rice, D. W.;
Sedelnikova, S. E.; Heal, J. R.; Sheridan, J. M.; Aiwale, S.
T.; Chauhan, P. K.; Srivastava, A.; Taneja, A.; Collins, I.;
Errington, J.; Czaplewski, L. G. Science 2008, 321, 1673.
(6) Sorto, N. A.; Olmstead, M. M.; Shaw, J. T. J. Org. Chem.
2010, 75, 7946.
(7) Ding, Z.; Ma, X.; Zhou, W. Synth. Commun. 2012, DOI:
10.1080/00397911.2011.566408.
(8) Zhou, Z. L.; Navratil, J. M.; Cai, S. X.; Whittemore, E. R.;
Espitia, S. A.; Hawkinson, J. E.; Tran, M.; Woodward, R.
M.; Weber, E.; Keana, J. F. Bioorg. Med. Chem. 2001, 9,
2061.
(9) Analytical and spectral data: beige solid; mp 166–168 °C;
1H NMR (400 MHz, CDCl3): δ = 6.29 (d, J = 9.2 Hz, 1 H),
7.43 (d, J = 9.6 Hz, 1 H), 14.10 (s, 1 H), 15.00 (br s, 1 H);
MS (ESI): m/z = 203.04 [M + Na]+; HRMS (ESI): m/z [M+ +
Na]+ calcd for C7H4N2O4: 203.0069; found: 203.0070.
(10) Analytical and spectral data: yellow solid; mp 220–222 °C;
1H NMR (400 MHz, DMSO-d6): δ = 5.72 (s, 2 H), 7.10 (td,
J = 9.0, 2.0 Hz, 1 H), 7.41 (td, J = 9.2, 5.2 Hz, 1 H), 7.81 (br
s, 1 H), 8.10 (br s, 1 H), 8.65 (d, J = 2.4 Hz, 1 H), 8.72 (d,
J = 2.0 Hz, 1 H); MS (ESI): m/z = 378.04 [M + Na]+, 394.02
[M + K]+. 13C NMR (100 MHz, DMSO-d6): δ = 170.85,
161.12, 155.67, 152.83 (dd, J = 240.35, 6.3 Hz), 148.33 (dd,
J = 247.95, 9.6 Hz), 146.20, 145.95, 141.97 (dd, J = 11.2,
3.3 Hz), 129.92, 129.36, 117.16–116.71 (m), 111.32 (d, J =
4.2 Hz), 111.09 (d, J = 3.2 Hz), 69.29; 19F NMR (500 MHz,
DMSO-d6): δ = –122.78 (dd, J = 10.0, 5.0 Hz, 6-F), –133.55
(d, J = 10.0 Hz, 2-F); MS (ESI): m/z = 378.04 [M + Na]+,
394.02 [M + K]+; HRMS (ESI): m/z [M + Na]+ calcd for
C14H8ClF2N3O2S: 377.9892; found: 377.9895.
In summary, we have disclosed a short and efficient ap-
proach to a practical synthesis of PC190723 starting from
2,4-difluorophenol and 2-bromo-5-chloropyridin-3-yl-
amine. Reaction conditions were generally mild and only
a single protecting group was used during the process. We
believe that this is a general approach towards the synthe-
sis of this class of FtsZ inhibitors, which can be easily
used in the context of the formation of other analogues in
medicinal chemistry research. Although the synthesis of
PC1970223 requires metalation of an intermediate with s-
BuLi, it is easily scalable for the production of multigram
quantities. A major contrast between this approach and
the previously reported routes is the use of low-cost start-
ing materials, specifically avoiding 2,6-difluoro-3-
methoxybenzamide and benzyloxyacetyl chloride. Fur-
ther development and use of this methodology for the syn-
thesis of new inhibitors is in progress in our laboratory
and will be reported shortly.
Acknowledgment
This work was financially supported by The National Basic
Research Program (973 Program) (2010CB735601 and
2012CB724501).
Supporting Information for this article is available online at
References and Notes
(1) (a) Fischbach, M. A.; Walsh, C. T. Science 2009, 325, 1089.
(b) Furtado, G. H.; Nicolau, D. P. Expert Opin. Ther. Pat.
2010, 20, 1273.
Synlett 2012, 23, 1039–1042
© Georg Thieme Verlag Stuttgart · New York